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Abstract. We propose a new characteristic for counting the number of large outcomes in a

data set that are considered to be large w.r.t. some fixed threshold x. A popular characteristic
used for this purpose is the Cardinality of Upper Tail (CUT), which counts the number of outcomes
with magnitude larger than the threshold. We propose a similar characteristic called the Cardinality
of Upper Average (CUA), defined as the number of largest data points which have average value
equal to the threshold. CUA not only assesses the number of outcomes that are large, but also their
overall magnitude. CUA also has superior mathematical properties: it is a continuous function of
the threshold, its reciprocal is piece-wise linear w.r.t. threshold, and it is directly optimizable via
convex and linear programming. This is in contrast to CUT, which does not asses the severity of
large outcomes, is discontinuous as a function of threshold, and is such that direct optimization yields
numerically difficult non-convex problems. We show that CUA can be used to formulate meaningful
optimization problems containing counters of the largest components of a vector without introduction
of binary variables, leading to large improvement in computation speeds. In particular, we apply
the CUA concept to create new formulations of network optimization problems involving overloaded
nodes or edges, where we aim to minimize the number of most burdened nodes or edges.
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1. Introduction. When analyzing a set of n data points, one often needs to
count the number of outcomes that are large compared to some threshold x ∈ R.
For example, if the data points represent monetary losses, it is only natural that one
would want to count the number of outcomes that are large compared to a threshold
representing an ‘acceptable’ level of loss. A popular characteristic which acts as a
counter of such large outcomes is the x-Cardinality of Upper Tail (CUTx), which
counts the number of data points with magnitude exceeding the threshold x. We
introduce a similar characteristic called the x-Cardinality of Upper Average (CUAx),
defined as the number of largest data points which have average value equal to the
threshold x. Thus, CUAx not only counts the number of data points with magnitude
larger than the threshold, but also the largest outcomes with magnitude less than the
threshold such that the average of these outcomes is equal to x.

Consider the following example to illustrate the conceptual difference between
CUAx and CUTx. Suppose that we have 10,000 pieces of gold. We want to make
some statement about the number of heavy pieces of gold in this set because we know,
for instance, that it takes 10 grams of gold to make one gold coin. So, 10 grams can
be considered a natural reference point (or threshold) for evaluating the heaviness
of gold pieces. After analyzing the dataset, we learn that there are only 3 pieces of
gold with weight exceeding 10 grams. This means that CUT10 = 3 and, thus, that
at least 3 gold coins can be made from the 3 heaviest pieces. Suppose, though, that
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the weight of the largest piece of gold equals 1,000 grams. Then, the lower bound,
3 coins, is quite far away from the number of coins which can be made from the
heaviest 3 pieces of gold. We can make at least 102 coins (i.e. 100 coins from the
largest piece plus two more coins from the other two heaviest pieces). CUTx does not
provide information about the heaviness of the largest pieces, only the lower bound
for the individual pieces. Now, suppose we have calculated that CUA10 = 207.3. This
actually means that you can make 207.3 coins from the heaviest 207.3 pieces. This is
the case because the average weight of a gold piece in the selected subset equals 10
grams. Also, notice that CUA10 tells us that the 208th piece needs to be cut! CUAx

is a continuous (nice mathematical) characteristic as a function of the threshold (10
grams), while CUTx is a discontinuous characteristic. CUAx provides information
about the average heaviness of largest pieces.

This paper is focused on logistics applications, therefore, let us discuss again
the same example in a logistics context. Suppose that we manage a network with
10,000 servers and assume that a server is “overloaded” if the length of the queue is
greater than or equal to 10 jobs. We can ask the question: How many servers are
overloaded? The answer is CUT10 = 3. However, it is unclear how significantly these
servers are overloaded and how much additional resource would be required to serve
the customers in these queues. An alternative characteristic is CUA10 = 207.3. This
means that the average length of a queue over the 207.3 busiest servers is 10 jobs and
the total number of unserved jobs in these servers is 207.3 × 10 = 2, 073. Therefore,
we understand immediately the total number of unserved clients in the 203.7 longest
queues. This important information is present in CUAx and is not present in CUTx.

You may ask, what is a better characteristic, CUAx or CUTx? The simple answer
is that these are different, complimentary characteristics. Therefore, while in some
cases you may be interested in CUTx and in other cases CUAx, it is probably a good
idea to calculate both characteristics.

In the most basic sense, CUAx is similar to CUTx, with both acting as counters of
large outcomes relative to a threshold. Beyond this, they have important differences.
First, as illustrated in the example, CUAx considers how far the outcome magnitudes
are from the threshold. The CUTx characteristic does not and only considers if
an outcome is larger than x, not considering how far beyond the threshold these
magnitudes lie. Second, CUAx has superior mathematical properties. It is continuous
w.r.t. the threshold parameter and a partial derivative can be taken w.r.t. threshold
yielding information regarding the sensitivity of CUAx to threshold changes. It is also
piecewise linear in its reciprocal. As we will show, this allows for efficient calculation
of CUAx for all thresholds x ∈ R.

In the context of optimization, the properties of CUAx yield substantial benefits,
with direct optimization of CUAx reducing to convex, sometimes linear, programming.
This means that we are able to efficiently minimize the number of tail outcomes,
while taking into account the severity of these outcomes. Furthermore, the tail that is
minimized is determined by the threshold, with the tail including the largest outcomes
that average to the specified threshold. This is all in contrast to CUTx, which does
not account for the severity of the tail outcomes, is discontinuous w.r.t. the threshold
parameter, and is such that direct optimization yields numerically challenging non-
convex problems.

While being different from CUTx in many ways, CUAx is uniquely related. We
show that CUAx is, in a certain sense, the minimal quasi-convex upper bound of
CUTx. In an optimization context, this could be useful, suggesting that CUAx min-
imization may yield efficient heuristic approaches to reducing CUTx. This, though,
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is not our focus and we emphasize that CUAx and its optimization are meaningful in
their own right.

We apply CUAx to a specific optimization setting, providing convex and Linear
Programming (LP) CUAx minimization formulations for solving network optimiza-
tion problems, specifically addressing variants of the generalized assignment, capacity
planning, and min cost network flow problems. In general, we consider network flow
problems where product must flow through a network and we assume that intermedi-
ate nodes or arcs can become “overloaded” if too much flow is pushed through them.
Therefore, it is desirable to minimize the number of overloaded nodes or arcs. We
formulate this as a CUAx minimization problem, which accounts for the magnitude
of loads put upon nodes/arcs in the overloaded state, as well as the nodes/arcs with
loads less than, but most near to the overloaded state. This information may be
meaningful, as it may be undesirable to have nodes/arcs that, while not yet over-
loaded, are close to the overloaded state. Furthermore, it may be undesirable to have
nodes/arcs that are dramatically overloaded. Thus, we minimize the number of most
overloaded nodes/arcs that have average load equal to x, where nodes/arcs with loads
larger than x are considered to be overloaded.

We compare these CUAx formulations with similar formulations that minimize
CUTx, directly minimizing the number of nodes/arcs in the overloaded state. With
this problem involving binary variables to indicate the state of the node/arc, Mixed
Integer Programming (MIP) must be used. Not only is this much more difficult
to solve than the LP CUAx minimization, but we show that it may provide less
appealing policies. By minimizing CUTx, information about the magnitude of the
loads is ignored and it only considers whether a node/arc is overloaded or not. This
information, as already mentioned, can be meaningful. Thus, the CUAx formulation
may be more appropriate and suggest more appealing policies.

The CUAx concept is actually a deterministic variant of so called Buffered Prob-
ability of Exceedance (bPOE). A detailed discussion of this concept, studied in [9,
12, 16, 17, 18], is beyond the scope of this paper. We maintain a deterministic set-
ting, while bPOE is studied in a probabilistic, stochastic optimization setting. We
do, though, include some background connecting CUAx and bPOE in Appendix A
for the interested reader.

This paper is organized as follows. Section 2 discusses the task of analyzing the
tail of a data distribution in a deterministic setting, which serves to set the stage for
defining CUAx. Section 3.1 defines CUAx. We show that CUAx is efficient to calculate
and give an example illustrating CUAx, particularly as an upper bound of CUTx.
Additionally, we provide an efficient method of calculating CUAx which utilizes the
piecewise linearity of its reciprocal. Section 3.2 provides relations between CUAx

and CUTx, showing that it is possible to simultaneously calculate CUAx and CUTx.
Section 4 shows the power of the CUAx concept when applied to an optimization
setting. Specifically, we discuss classes of network optimization problems that are
traditionally formulated as MIP’s and show how application of CUAx leads to convex
or linear programming reformulations of analogous problems.

2. Cardinality of Upper Tail and Related Quantities.

2.1. Cardinality of Upper Tail and Upper Average. Consider a Euclidean
vector y = (y1, . . . , yn) containing n data points. It is often important in applications
to know the number of components of y that exceed a particular threshold x ∈ R.
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We call this the Cardinality of the Upper Tail (CUTx), denoted as

CUTx(y) = ηx(y) = |{yi|yi ≥ x, i = 1, . . . , n}| .

This quantity, though, can be difficult to work with. For example, it is discontinuous
w.r.t. the x parameter. Additionally, this quantity does not provide information
about the magnitude of the components above the threshold x. As we will show in
later sections, these are undesirable properties in an optimization setting. We can
also consider other quantities that provide useful information about the tail of the
data distribution that are easy to work with. For example, one could consider the
ordered weighted averaging aggregation operators of [19]. We can also consider a
type of tail average called the k-Upper Average (UAk), which provides information
about the magnitude of data points in the tail and upper bounds on CUTx. If we let
(y(1), y(2), . . . , y(n)) represent a permutation of (y1, . . . , yn) with components listed in
nondecreasing order, y(1) ≤ y(2) ≤ . . . ≤ y(n), we can denote this quantity as

(1) UAk(y) =
1

k

n∑
i=n−k+1

y(i) .

2.2. Generalized UAk. Notice that (1) only applies to integer values of the k
parameter. This function, UAk(·), can also be defined in a more general manner for
non-integer values of k. Popularized in the financial engineering literature under the
name CVaR, paper [15] defines this quantity in a broad, probabilistic setting. Here,
we maintain a deterministic setting, but emphasize that this is simply a special case
of the general CVaR definition and formula. Thus, following directly from [15], we
have that for any k ∈ [1, n], letting [·]+ = max{0, ·},

(2) UAk(y) = min
γ

{
γ +

1

k

n∑
i=1

[yi − γ]+

}
.

Though this formula may not seem intuitive, it can be clarified by noticing two facts.
First, the optimal objective value of (2) is equal to (1) as long as k ∈ {1, . . . , n}
is integer, meaning that for the integer case, the seemingly complex formula of (2)
simply yields the average of the k largest components. Second, for noninteger values
of k ∈ [1, n], this formula simply gives a weighted average of UAbkc(y) and UAdke(y),
where bkc denotes the largest integer less than or equal to k and dke denotes the
smallest integer greater than or equal to k. Thus, intuitively, formulation (2) is still
averaging the largest k data points, but it is now a continuous function w.r.t. the k
parameter.

In addition to providing useful information about the magnitude of data points
in the tail, UAk(·) provides an upper bound for CUTx. Specifically, we have the
following relation, which follows intuitively from (1) and the definition of CUTx.

(3) UAk(y) = x =⇒ ηx(y) ≤ k .

In this paper, we define CUAx, the inverse of (2). As we will show, CUAx can be
efficiently calculated and provides valuable information about the largest components
of our data vector y. Additionally, CUAx can be efficiently optimized with convex and
linear programming. We also show that CUAx can be used to formulate optimization
problems that are similar to, yet fundamentally different than CUTx optimization
problems. We show that CUAx optimization can sometimes be more appropriate and
may suggest more appealing optimal policies than the similar CUTx minimization
problems.
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3. Cardinality of the Upper Average.

3.1. Definition of CUAx. For a specified threshold x, CUAx calculates the
value of k ∈ [1, n] such that UAk(y) = x. In words, CUAx is equal to the number
of largest components of the vector y such that the average of those components is
equal to x. We now present Theorem 1, which provides two equivalent ways of defin-
ing CUAx. While (5) could be viewed as the more intuitive of the two, we focus on the
more tractable representation (4) throughout this paper. We then provide examples
illustrating key differences between CUTx and CUAx.

Theorem 1: Consider a Euclidean vector y = (y1, . . . , yn). CUAx of y at threshold
x ∈ R is defined as,

(4) η̄x(y) = min
a≥0

n∑
i=1

[a(yi − x) + 1]+ ,

and can also be represented as,
(5)

η̄x(y) =

{
max{k| 1k (

∑bkc
i=1 y

(n−i+1) + (k − bkc)y(n−dke+1)) ≥ x} if x ≤ maxi yi ,

0 otherwise.

Proof: Here we show that for a Euclidean vector y ∈ Rn, the equation (4) given
for CUAx at threshold x ∈ R equals the value of k such that UAk(y) = x. We must
address four cases. The equivalence of (4) and (5) follows from these cases.
Case 1: Assume x ∈ (UAn(y),UA1(y)). This assumption ensures that there exists
a value of k ∈ [1, n] such that UAk(y) = x. We want to find the value of k such that
UAk(y) = x, so we write CUAx as

(6) η̄x(y) = {k|UAk(y) = x} .

Notice now that UAk(y) is a strictly increasing function of k on k ∈ [n−mn , n], where
m = |{yi|yi = max

i
yi}| (i.e. m equals the number of components of y that are equal

to the largest component of y). This follows from the known result (i.e. [15]) that
CVaR is strictly increasing on an equivalent interval. Because of this, we see that
equation (6) can be rewritten as the unique solution to

(7) min{k|UAk(y) ≤ x} .

Substituting equation (2) for UAk(y), equation (7) becomes

(8) η̄x(y) = min

{
k

∣∣∣∣∣ min
γ

γ +
1

k

n∑
i=1

[yi − γ]+ ≤ x

}
.

This can then be simplified as

(9)

η̄x(y) = min
k,γ

k

s.t. γ +
1

k

n∑
i=1

[yi − γ]+ ≤ x .

5



Explicitly enforcing the constraint x − γ > 0, we can further simplify (9) without
changing the optimal solution to become

(10)

η̄x(y) = min
k,x−γ>0

k

s.t.

∑n
i=1[yi − γ]+

x− γ
≤ k .

This, though, can be further simplified to become

(11) η̄x(y) = min
x−γ>0

∑n
i=1[yi − γ]+

x− γ
.

Finally, with the change of variable a = 1
x−γ , (11) can be transformed into

(12) η̄x(y) = min
a≥0

n∑
i=1

[a(yi − x) + 1]+ .

Case 2: Assume x = maxj yj . With x = maxj yj , we show that CUAx equals the
number of components equal to maxj yj . For notational convenience let maxj yj =
ymax. Also, assume there are m components of y that are equal to ymax, i.e. |{yi|yi =
ymax}| = m. Also, let ŷ = max{yi|yi < ymax}, i.e. ŷ equals the largest component of
y that is less than ymax. 1

Since yj − ymax ≤ 0 for any j ∈ {1, ...n}, we have that for any a∗ ≥ −1
ŷ−ymax

min
a≥0

n∑
i=1

[a(yi − ymax) + 1]+ ≥ min
a≥0

∑
yi=ymax

[a(yi − ymax) + 1]+

=

n∑
i=1

[a∗(yi − ymax) + 1]+ = |{yi|yi = ymax}| = m .

To see this, notice that for any yi ≤ ŷ and any a∗ ≥ −1
ŷ−ymax

we get

[a∗(yi − ymax) + 1]+ ≤ [a∗(ŷ − ymax) + 1]+ = [−1 + 1]+ = 0 .

Furthermore, for any yj = ymax = x, we have that

[a(yi − ymax) + 1]+ = [a(0) + 1]+ = 1 .

.
Case 3: Assume x > maxi yi. We need to show that equation (4) equals the value of
k such that UAk(y) = x. Since x > maxi yi we show that CUAx equals 0.
Let us denote maxj yj = ymax. Since x > ymax, then for any i ∈ {1, ..., n} we have
yi−x < 0. This implies that for any a∗ ≥ −1

ymax−x , a
∗(yi−x) ≤ −1 for all i, therefore,

n∑
i=1

[a∗(yi − x) + 1]+ = 0 = min
a≥0

n∑
i=1

[a(yi − x) + 1]+ .

1If all components of y are equal, then apply Case 4. In this case, although ŷ does not exist,
UAn(y) = maxj yj and Case 4 can be applied
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Case 4: Assume x ≤ UAn(y). We need to show that equation (4) equals the value
of k such that UAk(y) = x. Since x ≤ UAn(y), we show that CUAx equals n.
Since x ≤ UAn(y), we have 0 ≤ UAn(y)− x. This implies that for any a ≥ 0

n∑
i=1

[a(yi − x) + 1]+ ≥
n∑
i=1

[a(yi − x) + 1] ≥ n[a(UAn(y)− x) + 1] ≥ n .

This result implies that min
a≥0

∑n
i=1[a(yi − x) + 1]+ = n (attained at a = 0).

�

Initially, it may be surprising that this particular formula calculates the number
of biggest components of the vector y such that the average of those components is
equal to x. In short, this formula is derived from equation (2), partially explaining its
form as the unique minimal value to the minimization problem. Note that the proof
of Theorem 1 also shows how CUAx is defined for thresholds x /∈ (UAn(y),UA1(y))
where UAn(y) = 1

n

∑n
i=1 yi and UA1(y) = maxi yi. Furthermore, the definition of

CUAx for these extreme cases is motivated by its connection to bPOE, a new concept
recently studied in [9, 12, 16, 17, 18]. Appendix A includes a brief discussion of this
connection showing that CUAx can be viewed as a deterministic variant of Upper
bPOE [12, 9]. A detailed discussion of this, though, is beyond the scope of this paper.

To begin discussing CUAx, first note that CUAx is continuous w.r.t. the parame-
ter x on the interval x ∈ (−∞,UA1(y)); this will be shown later on in Corollary 1. As
already mentioned in Section 2, CUTx is discontinuous w.r.t. this threshold parame-
ter. Second, notice that by calculating the k ∈ [1, n] such that UAk(y) = x, CUAx is
counting all components with magnitude greater than x and some components with
magnitude less than x. These magnitudes can contain important and meaningful
information that is ignored by CUTx.

For example, assume you are deciding whether or not to place a service facility
in a particular location (e.g. a cell phone tower), with the service facility being able
to serve only houses within a geographic radius of R miles. Let y then represent the
entire set of customers you wish to serve from this location and their distance from
the facility. To assess the quality of this location, it is intuitive to look at CUTR(y)
which gives you the number of customers within this set that will go unserved by
this facility. However, the use of such a hard threshold is quite unintuitive under
closer inspection. Decision makers would certainly like to know if a large number
of customers are located R + ε miles away from the facility where ε is a very small
number. Similarly, they would also like to know if a large number of customers are
R−ε miles away. These characteristics are critically important to assessing the quality
of this facility and the service it can provide to a set of desired customers. In this
example, CUAx can be an important counterpart to CUTx, acting as a soft threshold,
counting the number of customers around R miles away from the facility.

Consider also a disaster relief agency that is analyzing historical hurricane damage
data where damages are in dollars [7]. Assume that the agency is attempting to
determine if allocating $B dollars to the relief fund for the next hurricane is sufficient.
First, of the historical damage amounts that exceed $B, it is important to know by
how much these damages exceeded $B, especially if the exceedance is large. Secondly,
it is important to know the magnitude of the largest damage amounts that are less
than $B. Are these damages very close to $B? Or are they much smaller than $B?
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Figure 1: Cardinality of Upper Tail (CUTx), ηx(y), dashed line, and Cardinality of Upper Average
(CUAx), η̄x(y), solid line, as functions of threshold x, where y = (1, 2, 5, 7).

Answers to these questions are clearly important for budgetary considerations.
Next, consider the simple, illustrative example in Fig. 1 with data vector y =

(1, 2, 5, 7). For this vector, CUAx = 2 for x = 6, because the average of the two
largest components of the vector y equals (7 + 5)/2 = 6, and CUAx = 3 for x =
4 2

3 = (2 + 5 + 7)/3. We can observe that CUAx is an upper bound for CUTx.
Additionally, for this example, Fig. 1 shows that CUAx is continuous w.r.t. x except at
the maximum point where threshold x = 7, while CUTx is discontinuous at x = 1, 2, 5,
and 7.

With CUAx being the inverse of UAk, both quantities relay similar information.
We mention, though, that CUAx may be more intuitive to use when data have mean-
ingful units, particularly because the threshold parameter x is posed in the associated
units. For example, if the data represent monetary losses (in the unit of dollars) from
hurricane damage, it can be more intuitive to work with a threshold x, which will
be some dollar amount, rather than with the k-parameter. Consider, as before, the
disaster relief agency that is attempting to determine if allocating $B dollars to the
relief fund for the next hurricane is sufficient. It would be much more intuitive to look
at CUAB than to look at UAk for many different values of k. Additionally, this also
applies when considering some optimization tasks. Assume an investor is trying to
form a portfolio by analyzing historical stock behavior (where each possible portfolio
generates some data set of historical losses it would have incurred in the market). If
an investor does not want to incur losses larger than $B dollars, it is more intuitive to
try and devise a portfolio that minimizes CUAB rather than to find a portfolio that
minimizes UAk for some appropriate value of k which would need to be determined.

We also highlight the simple, but useful fact that CUAx tells you immediately
the total weight that is in the tail. Consider again the example from the introduction
where we have a network of 10,000 servers and we find that CUA10 = 207.3. CUAx

immediately tells us that 10 × 207.3 additional units of resource are needed to pro-
cess jobs in the 207.3 longest queues. On the other hand, CUT10 = 3 is much less
informative, telling us only that the 3 longest queues need at least 30 additional units
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of resource, even though this number could be much larger. We can put this more
precisely, though. Assume that a∗ is an optimal point for CUAx calculation (4) at
threshold x. We prove in Section 3.2.2 that,

xη̄x(y) ≤
∑
i

{yi|yi ≥ x−
1

a∗
} ≤ x(bη̄x(y)c+ 1) ,

where bkc denotes the largest integer less than or equal to k and dke denote the
smallest integer greater than or equal to k. Therefore, we know that the total amount
of resource needed to process all unserved jobs waiting in queues with length longer
than or equal to x− 1

a∗ is somewhere between xη̄x(y) and x(bη̄x(y)c+1). Additionally,
note that the continuity of CUAx can help determine where these resources are needed.
For example, consider the case where all queues have load less than 10 except for three
servers, which are extremely overloaded. In this case, one can take a partial derivative
of CUAx w.r.t. the threshold to analyze how dramatically CUAx is changing as the
threshold changes continuously.

3.1.1. CUAx Calculation via Linear Interpolation. Suppose that one would
like to calculate CUAx for multiple threshold levels x ∈ R. One could utilize formula
(4) to achieve this task, but this proves quite inefficient if one would like to know
CUAx for all thresholds x ∈ R. When one is simply interested in calculating CUAx

for all thresholds x ∈ R for a fixed vector y, it is possible to utilize linear interpo-
lation to calculate CUAx at all thresholds x ∈ R. To show this, we first introduce
the following alternative calculation formula for CUAx, which shows that CUAx can
be calculated via minimization over a finite set of points. It also provides additional
insight into formula (4).

Proposition 1: Consider a Euclidean vector y = (y1, . . . , yn) and let y0 = −∞.
CUAx of y at threshold x ∈ R equals

(13) η̄x(y) = min
j∈{0,1,...,n}

∑n
i=1[yi − yj ]+

[x− yj ]+
.

Proof: A change of variable a = 1
x−γ transforms minimization formula (4) to the

following formula:

(14) η̄x(y) = inf
γ<x

∑n
i=1[yi − γ]+

x− γ
.

Let us show that the objective is minimal for either γ = yj for j = 1, . . . , n, or for
γ → −∞ = y0. Suppose the contrary. Then the objective is differentiable at the
optimal γ∗, since only γ = yi are the points where derivative over γ does not exist.
Then the derivative of the objective w.r.t. γ must be 0 at γ∗:

(x− γ)−2

(x− γ)

(
n∑
i=1

[yi − γ]+

)′
γ

− (x− γ)′γ

n∑
i=1

[yi − γ]+

∣∣∣∣∣∣
γ=γ∗

= 0,

(15)
∑
yi>γ∗

(−1)(x− γ∗)− (−1)
∑
yi>γ∗

(yi − γ∗) =
∑
yi>γ∗

(yi − x) = 0.

Suppose γ∗ ∈ (yi, yi+1), or γ∗ ∈ (yi, x), for some i = 0, . . . , n. From the derivative ex-
pression above it follows that the derivative should be equal to 0 on the corresponding
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interval, therefore, the objective function has the same value at γ = yi and γ∗, and
thus γ = yi is also an optimal solution, which is a contradiction. �

Utilizing this proposition, the following Corollary 1 shows that CUAx can be
calculated via simple linear interpolation. Proposition 1, by itself, though, provides
interesting insights. First, we see that calculation can be performed by only consider-
ing the finite set of points (y0, y1, . . . , yn). Second, it follows from Proposition 1 that
if yj is the argmin of (13), then a∗ = 1

x−yj is an argmin of (4). This fact can be seen
more clearly in the proof of Proposition 1 (i.e. see the change of variable that takes
place).

Moving to the discussion of linear interpolation, suppose we have the vector
y ∈ Rn. Instead of using formula (4) to calculate CUAx, one only needs to calcu-
late UAk(y) for k ∈ {1, . . . , n − 1}, which effectively calculates CUAx for thresholds
x ∈ {UAn−1(y), . . . ,UA1(y)}, then utilize linear interpolation to calculate CUAx for
the intermediate threshold values.

Corollary 1: The function 1
η̄x(y) is a piecewise-linear convex function of x with

knots at x ∈ {UAn(y),UAn−1(y), . . . ,UA1(y)}. Specifically, for any threshold
x = λUAi+1(y) + (1− λ)UAi(y), i ∈ {1, . . . , n− 1}, λ ∈ (0, 1), we have that

(16)
1

η̄x(y)
=

λ

η̄UAi+1(y)(y)
+

1− λ
η̄UAi(y)(y)

.

Proof: The derivative expression (15) for minimization problem (14) implies that at
x ∈ [UAn−j−1(y),UAn−j(y)] and γ = y(j), where the superscript denotes the ordered
vector, the derivative

∑
yi>γ−ε(yi − x) ≤ 0, the derivative

∑
yi>γ+ε(yi − x) ≥ 0 for

all ε > 0. Therefore, γ = y(j) is optimal for
x ∈ [UAn−j−1(y),UAn−j(y)] and

η̄x(y) =

∑n
i=1[yi − y(j)]+

x− y(j)
.

Hence,
1

η̄x(y)
=

λ

η̄UAi+1(y)(y)
+

1− λ
η̄UAi(y)(y)

for x = λUAi+1(y) + (1 − λ)UAi(y), i ∈ {1, . . . , n − 1}, λ ∈ (0, 1) and values
{UAn(y), . . . ,UA1(y)} are knots for the piecewise linear function 1

η̄x(y) . �

Thus, we only need to calculate CUAx for n− 1 thresholds, namely
x ∈ {UAn−1(y), . . . ,UA1(y)} and we can “fill in” the missing thresholds via linear
interpolation. Using the example y = (1, 2, 5, 7) from Section 3.1, we illustrate the
piecewise linearity in Fig. 2 which plots 1

η̄x(y) on the vertical axis and x on the hori-
zontal axis.

3.2. Connecting CUAx and CUTx. In this section, we discuss the connection
between CUAx and CUTx. We emphasize, though, that the core value of CUAx is not
rooted in its relationship with CUTx. As already mentioned, CUAx is a complimen-
tary characteristic to CUTx that is useful in its own right, as it considers information
about the magnitude of data points around the threshold, which CUTx does not, and
is a continuous function w.r.t. threshold. In Section 4, we discuss this further, showing
that CUAx optimization problems are interesting in their own right, and that their
usefulness is not confined by their relationship with CUTx minimization problems.
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Figure 2: 1
ηx(y)

, dashed line, and 1
η̄x(y)

, solid line, as functions of threshold x, where y = (1, 2, 5, 7).

3.2.1. CUAx as Upper Bound on CUTx. Fig. 1 shows for a specific example
that CUAx acts as an upper bound for CUTx. Specifically, this can be posed as the
following relation, which follows intuitively from the definitions of CUAx, UAk, and
CUTx:

(17) η̄x(y) = k ⇐⇒ UAk(y) = x =⇒ ηx(y) ≤ k .

We can improve upon this notion of an upper bound, though, showing that it can
be viewed as the minimal quasi-convex upper bound. This is shown in the following
proposition, which is a Euclidean space alternative of a statement proved in [9]. An
analogous statement for Value-at-Risk and Conditional-Value-at-Risk can be found in
[8]. We call a function on Rn symmetric if permutation of components of a vector does
not change the value of the function. A function g is called quasi-convex if its level-sets
{y|g(y) ≤ c} are convex for all c, or, equivalently, g(λy+(1−λ)z) ≤ max{g(y), g(z)}
for all λ ∈ (0, 1) and y, z ∈ Rn.

Proposition 2: Consider a function g : Rn → R which is symmetric, quasi-convex,
and is greater than ηx everywhere on Rn. Then g(y) ≥ bη̄x(y)c for all y ∈ Rn.

Proof: Indeed, suppose that g(y) < bη̄x(y)c, which implies that η̄x(y) ≥ 1. By
the property of CUA, there exist k ≡ bη̄x(y)c components of y whose average is at
least x. Denote indices of these components by I = {i1, . . . , ik}. Consider vectors
y1, . . . ,yk obtained from y by applying the cyclic permutation (i1, . . . , ik) to its com-
ponents i times for yi. Since g is symmetric, g(yj) = g(y). Consider y′ = 1

k

∑k
j=1 yj ,

then y′i = UAk(y) ≥ x for all i ∈ I, therefore, ηx(y′) ≥ k. Notice that since g is
quasi-convex, then g(y′) ≤ max{g(y1), . . . , g(yk)} = g(y) < k ≤ ηx(y′). That is, this
contradicts the assumption that g is greater than ηx. �

Notice that since function b·c is nondecreasing, and bmax{a, b}c = max{bac, bbc},
then bη̄xc is itself a symmetric, quasi-convex function, which is greater than ηx and
that, moreover, it is the smallest function in the class of symmetric quasi-convex

11



functions that are greater than ηx.
This may be quite useful in practice, particularly in an optimization context, as

CUAx can be viewed as an efficiently calculable upper bound for CUTx.

3.2.2. Simultaneous Calculation of CUAx and CUTx . An important and
interesting property of CUAx calculation formula (4) is that calculation of CUAx

provides us information about CUTx. Specifically, we have the following property of
formula (4).

Proposition 3: Suppose for a vector y ∈ Rn and threshold x ∈ (UAn(y),UA1(y))
we have that

η̄x(y) =

n∑
i=1

[a∗(yi − x) + 1]+ = k ,

where a∗ is an optimal point for (4). Then, if k is noninteger, we have that a∗ =
1

x−y(n−bkc) and is the unique minimizer of (4). Furthermore, we have that

ηx− 1
a∗

(y) = dke .

Otherwise, if k is integer, the set of minimizers of (4) is given by the interval
I = [ 1

x−y(n−k) ,
1

x−y(n−k+1) ] where a∗ ∈ I. Furthermore, we have that

(18) ηx− 1
a∗

(y) =

{
k + 1 , if a∗ = 1

x−y(n−k) ,

k , otherwise.

Proof: For this proof, let us denote the kth largest component of y as y(k). Let us
also denote, for any real valued random variable X the upper quantile as q+

α (X) =
inf{x|P (X ≤ x) > α} and the lower quantile as qα(X) = min{x|P (X ≤ x) ≥ α},
where α ∈ [0, 1] is a probability level. Note that when we discuss the quantiles of y,
we are treating y as a discretely distributed random variable with equally probable
scenarios y1, ..., yn.
From [15], we know that if UAk(y) = x and γ∗ ∈ argmin

γ
γ + 1

k

∑n
i=1[yi − γ]+, then

γ∗ ∈ [q( n−k
n )(y), q+

( n−k
n )

(y)], where k is related to the probability level by the equation
k = n(1−α). Let us now look at the two cases where k is either integer or non-integer.
For both cases, recall that as shown in Case 1 for the proof of Theorem 1 that if

(19)

η̄x(y) = min
x−γ>0

∑n
i=1[yi − γ]+

x− γ

=

∑n
i=1[yi − γ∗]+

x− γ∗

= k ,

then, UAk(y) = x and γ∗ ∈ argmin
γ

γ + 1
k

∑n
i=1[yi − γ]+ and that a∗ = 1

x−γ∗ is an

optimal point for (4).
Case 1: Assume that k is non-integer. Then, we have that

q( n−k
n )(y) = q+

( n−k
n )

(y) = y(n−bkc) .

12



Thus, we have that

η̄x(y) = k =⇒ x− 1

a∗
∈ [q( n−k

n )(y), q+

( n−k
n )

(y)] = y(n−bkc) .

Furthermore, this implies that

ηx− 1
a∗

(y) = dke and a∗ =
1

x− y(n−bkc) .

Case 2: Assume that k is integer. Then, we have that

[q( n−k
n )(y), q+

( n−k
n )

(y)] = [y(n−k), y(n−k+1)] .

Thus, we have that

η̄x(y) = k =⇒ x− 1

a∗
∈ [q( n−k

n )(y), q+

( n−k
n )

(y)] = [y(n−k), y(n−k+1)] .

Furthermore, this implies that a∗ ∈ [ 1
x−y(n−k) ,

1
x−y(n−k+1) ] and that

(20) ηx− 1
a∗

(y) =

{
k + 1 , if x− 1

a∗ = y(n−k) ,

k , otherwise.

�

Proposition 3 is quite useful, as it shows that simply calculating CUAx provides
information about CUTx. Note that this result can be viewed as analogous to one
regarding Conditional-Value-at-Risk in [15] which shows that the value of Value-at-
Risk can be calculated as a byproduct of the calculation formula (2).

In the context of our earlier example involving 10,000 servers, we said that
x × CUAx told us how many additional resources were needed to cover the CUAx

busiest queues. Using Proposition 3, we can expand upon this statement with the
following Corollary.

Corollary 2: Suppose that for a vector y ∈ Rn and threshold x ∈ (UAn(y),UA1(y))
we have that η̄x(y) =

∑n
i=1[a∗(yi − x) + 1]+ = k. Then,

xη̄x(y) ≤
∑
i

{yi|yi ≥ x−
1

a∗
} ≤ x(bη̄x(y)c+ 1) .

Proof: We first prove the left hand inequality. Recall that as shown in Case 1, proof
of Theorem 1, that if

(21) η̄x(y) = min
x−γ>0

∑n
i=1[yi − γ]+

x− γ
=

∑n
i=1[yi − γ∗]+

x− γ∗
= k ,

then, UAk(y) = x and γ∗ ∈ argmin
γ

γ + 1
k

∑n
i=1[yi − γ]+. Rearranging and applying

the change of variable a∗ = 1
x−γ∗ , or equivalently γ

∗ = x− 1
a∗ , we have

η̄x(y)(x− (x− 1

a∗
)) =

∑
i

[yi − (x− 1

a∗
)]+

13



which then gives

xη̄x(y) =
∑
i

[yi − (x− 1

a∗
)]+ + (x− 1

a∗
)η̄x(y) .

Noting that Proposition 3 implies that η̄x(y) ≤ ηx− 1
a∗

(y), we finally have that

xη̄x(y) =
∑
i

[yi − (x− 1

a∗
)]+ + (x− 1

a∗
)η̄x(y)

≤
∑
i

[yi − (x− 1

a∗
)]+ + (x− 1

a∗
)ηx− 1

a∗
(y) =

∑
i

{yi|yi ≥ x−
1

a∗
}

Now we prove the right hand inequality. First, note that if η̄x(y) = k, then UAk(y) =
x. Second, note that Proposition 3 implies that k ≤ ηx− 1

a∗
(y) implying further that

x = UAk(y) ≥ UAη
x− 1

a∗
(y)(y). Third, note that Proposition 3 also implies that

ηx− 1
a∗
≤ bη̄x(y)c+ 1. Finally, note that

∑
i{yi|yi ≥ x−

1
a∗ } = UAη

x− 1
a∗

(y)(y)ηx− 1
a∗
.

Using these facts, we have that∑
i

{yi|yi ≥ x−
1

a∗
} = UAη

x− 1
a∗

(y)(y)ηx− 1
a∗
≤ xηx− 1

a∗
≤ x(bη̄x(y)c+ 1) .

�

Therefore, Corollary 2, in the context of the server example, shows us that the
total amount of unserved jobs waiting in queues with length longer than or equal to
x− 1

a∗ is somewhere between xη̄x(y) and x(bη̄x(y)c+ 1).

4. Optimization of CUAx. When entered into an optimization setting, CUAx

provides substantial benefits, particularly when compared to the analogous use of
CUTx. Consider the following CUTx minimization problem, where S ⊆ Rn is a
convex set and x ∈ R is a specified threshold:

min
y∈S

ηx(y)

In order to solve this problem, it is natural to reformulate it as an MIP. In other
words, to indicate the state of a vector component as being larger than x or not,
introduction of binary variables is a natural consideration.

We consider minimization of CUAx, which is posed as follows.

min
y∈S

η̄x(y) = min
y∈S

{
min
a≥0

n∑
i=1

[a(yi − x) + 1]+

}
= min

y∈S,a≥0

n∑
i=1

[a(yi − x) + 1]+ .

As we will show by multiple examples, if the set S is convex, the CUAx minimization
problem can be reduced to convex programming. Furthermore, if the set S is a
polyhedron, the CUAx minimization problem can be reduced to linear programming.
This is, in fact, a general result which follows from [9]. Specifically, as we will show in
specific cases, as long as S is convex, we can make a simple change of variable ayi = ŷi
to yield the equivalent convex problems:

min
y∈S,a≥0

n∑
i=1

[a(yi − x) + 1]+ = min
ŷ∈Ŝ,a≥0

n∑
i=1

[ŷi − ax+ 1]+ ,
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where Ŝ = cl cone(S) is a closed convex cone. Linear programming reformulations
follow similarly.

Additionally, CUAx minimization itself is meaningful, as it considers the mag-
nitude of the components around the threshold x. Therefore, while also minimizing
an upper bound for CUTx, the CUAx minimization is interesting in its own right.
To demonstrate this, we provide an example network flow problems where CUAx

optimization may be more appealing than the analogous CUTx minimization.

4.1. Applications to Network Optimization. We now present variations of
three standard network flow problems in the context that we have edges or nodes that
become overloaded and thus we would like to minimize the number of edges/nodes
that are overloaded. To solve network flow problems in this context, we use formula-
tions with a CUAx or CUTx objective. We first show that the CUAx minimization
problems reduce to LP’s, yielding obvious computational advantages over the CUTx
minimization problems which are formulated as MIP’s. We bolster this point by pro-
viding a computational example and by proving an NP-hardness result for CUTx
minimization problems. We then show that, depending on the context, the optimal
CUTx network flows can be unappealing, yielding edges or nodes that are severely
overloaded or flow configurations that are more sensitive to minor fluctuations in net-
work conditions. Optimal CUAx flows, on the other hand, can be shown to mitigate
these issues, providing relatively stable solutions with more evenly distributed flow
patterns. The three network flow problems we discuss are the generalized assignment,
min cost flow, and capacity planning problems.

Of course, both CUAx and CUTx have their merits, and we make no claim that
one is always superior to the other. In general, MIP formulations have much more
flexibility in terms of modeling capabilities as compared to LP’s. Nevertheless, we
focus on the benefits that the efficiently solvable CUAx formulations can provide in
comparison to CUTx formulations.

4.1.1. The Generalized Assignment Problem. Throughout the remaining
sections, we consider a network represented by a graph G = (V,E) of edges E and
vertices V , where loads of product flow from supply vertices VS , through the graph
edges E and transshipment vertices VT , to the destination demand vertices VD. It
is common in network flow problems to be concerned with the amount of flow going
through each node, which we generally call the load. For example, consider the fol-
lowing Generalized Assignment Problem from [2]. We must assign |VS | jobs to |VT |
machines2, where Aij is the unit cost of assigning job i to machine j, and tij is the
time it takes machine j to process a unit of job i. Just as in [2], we assume fij is the
amount of job i assigned to machine j and that we can assign partial jobs to machines
(i.e. we do not require integral fij assignments). The goal, then, is to assign all jobs
at minimal cost such that no machine is running for more than x time units. For
this problem, it is considered undesirable to have the time-load of a machine larger
than x. A machine might, for example, become prone to malfunctions, overheating,

2In this context, we have no demand nodes and each supply node has supply equal to 1.
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or other risk factors if it becomes overloaded.

(22)

min
f

∑
(i,j)∈E

fijAij

s.t.
∑

(i,j)∈E

fij = 1,∀i ∈ VS

∑
(i,j)∈E

fijtij ≤ x, ∀j ∈ VT

fij ≥ 0.

Consider, though, the case where we would like to solve such a problem, but our x
makes the problem infeasible, meaning that we must overload some of the machines.
We could, of course, simply increase x, but may cause us to overload a large number
of machines. Thus, we would like to find an assignment that minimizes the number
of machines that are overloaded. Also, to make sure our assignment has reasonable
cost, we want it to satisfy a certain budget

∑
(i,j)∈E fijAij ≤ B. A natural way to

formulate this problem is as a CUTx minimization problem (23). Here, ξj indicates
whether the load lj on machine j exceeds the threshold and M is a sufficiently large
constant.

(23)

min
f,ξ,l

∑
j∈VT

ξj

s.t. ξj ≥
lj − x
M

,∀j ∈ VT

lj =
∑

(i,j)∈E

fijtij ,∀j ∈ VT

∑
(i,j)∈E

fij = 1,∀i ∈ VS

∑
(i,j)∈E

fijAij ≤ B

fij ≥ 0, ξij ∈ {0, 1}.

(24)

min
y,z,a,l

∑
j∈VT

zj

s.t. zj ≥ lj − ax+ 1

lj =
∑

(i,j)∈E

yijtij ,∀j ∈ VT

∑
(i,j)∈E

yij = a,∀i ∈ VS

∑
(i,j)∈E

yijAij ≤ aB

a ≥ 0, yij ≥ 0, zj ≥ 0.

Though this MIP will solve the problem of minimizing the number of overloaded
nodes (machines), it is ignoring potentially meaningful information about the mag-
nitude of loads put upon nodes. Specifically, it does not account for the magnitude
of loads put upon nodes in the overloaded state, as well as the nodes with loads less
than, but most near to the overloaded state. For nodes that are already overloaded,
it may be important to consider by how much they are overloaded. Additionally, it
may be undesirable to have nodes that, while not yet overloaded, are very close to
being in the overloaded state. For example, assume that if a machine runs for too
long, it may malfunction, and there is a large cost that must be paid to fix the broken
machine. Let I{li > x} be an indicator function, indicating if a node is overloaded.
Now suppose that, for a given assignment configuration and associated loads li, the
probability of a malfunction occurring at node i is given by,

P (malfunction at node i) = .5I{li > x}+ .5

(
1− 1

e[li−x]+

)
.
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Therefore, we have that a transshipment node will not malfunction until it is over-
loaded and once overloaded, the probability jumps to .5 and increases exponentially
based on the magnitude of the load vector. Solving the CUTx minimization problem
to calculate flow configuration for this system is ignoring critical information, and
may produce a very undesirable result. First, notice that the CUTx minimization
problem will ignore the magnitude with which a node is overloaded, thus ignoring
the fact that very overloaded nodes will, with higher probability, incur the additional
cost C. Second, notice that the CUTx minimization will ignore information about
nodes with loads less than, but very near to x. This can cause major stability issues if
there is uncertainty regarding exact system specifications at test-time. For example,
consider a CUTx minimization solution which has many nodes with loads less than,
but very near to x. If, at test-time, tij is slightly larger than expected, we will have
a cascade of increasing malfunction probabilities as the nodes with load close to x
are pushed over the threshold with their failure probability increasing from zero to
around .5. In Example 1, we demonstrate numerically that CUTx optimal solutions
indeed exhibit these characteristics.

By minimizing CUAx, we formulate a network flow problem that accounts for
these factors (i.e. the magnitudes of loads). Specifically, we have the CUAx optimiza-
tion problem (24) which aims to minimize the number of most loaded nodes that have
loads averaging to x. Notice that this has been reduced to a LP via a simple change
of variable afij = yij . This is a powerful result, which implies that we can achieve
a similar goal (i.e. minimizing the number of nodes with loads exceeding, or slightly
below a specified threshold) using LP as opposed to MIP. In terms of the network
optimization problem, it considers how much load is burdening the overloaded nodes
(i.e. by how much they are overloaded). Additionally, it considers how much load is
burdening the nodes with loads less than, but most near to the threshold (i.e. how
close to being overloaded are the most burdened nodes). Consider the following nu-
merical example.

Example 1: We consider this problem with 50 jobs and 20 machines, where (i, j) ∈ E
with probability .5, Aij are uniformly distributed on [0, 10], tij are uniformly dis-
tributed on [0, 1]. For our randomly generated task, we find that the general assign-
ment problem is infeasible at x = 2.5, so we consider this our threshold for CUAx

and CUTx minimization. We also set B = 25, which was set such that the budget
constraint would be tight for both CUAx and CUTx optimal assignment (i.e. to make
sure we had reasonable assignments). In Table 1 we show the ordered list of loads
given by the optimal CUAx and CUTx assignments. We see that CUTx severely
overloads a single node in order to drive CUTx to 1. The CUAx solution, on the
other hand, is spread much more evenly. For example, we see that the sum of nodes
exceeding x equals 23 for CUAx and 92.7 for CUTx. We also see that the CUTx so-
lution drives many loads to equal the threshold. As already mentioned, this can lead
to stability issues, as uncertainty in tij could lead to many machines being pushed
over the time limit threshold. If there is a discrete jump in failure probability as load
surpasses x, this could lead to heightened probability for a cascade of failures or a
huge jump in the expected number of machine malfunctions. Note also that we could
have introduced upper bounds lj ≤ Uj on the loads in the CUTx formulation to pre-
vent this extreme solution. However, the CUTx minimization will still have the same
properties, overloading a few machines to the maximum, Uj , to drive down CUTx
with many other machines having lj = x. Additionally, it is still an MIP compared
to a potential LP solution.
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Table 1: Ordered List of Optimal Loads lj =
∑

(i,j)∈E fijtij for all j ∈ VT . Overloaded nodes are
bold face.

CUA 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.6 1.7 1.7 2.0 2.2 2.2 2.3 2.5 3.2 3.7 4.3 5.5 6.3
CUT 0 2.2 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 92.7

Remark: Other objectives could be used for the optimization problems considered
in this section that also consider the magnitudes of the largest components and are
convex. One could use UAk or the overall exceedance

∑
i[li − x]+. However, these

have drawbacks compared to CUAx. For UAk, although it is actually equivalent to
CUAx for the proper choice of k, one will still need to choose an appropriate k. In our
examples, a threshold is natural, but choosing the correct k is less straightforward. It
is hard to tell how many of the largest components you want to minimize. For overall
exceedance, there are two major differences. First, it does not count components.
Thus, the expected exceedance may be small, but there may be a large number of
components comprising this sum. Second, it does not consider the magnitude of the
largest components that are less than the threshold. As already mentioned, this may
be important to consider. In a separate set of experiments, we saw that minimization
of overall exceedance often gives you many components lying on the threshold with
li = x.

Example 2: For a simple computational demonstration comparing the performance
of the CUAx formulation versus the CUTx formulation, we consider a formulation
similar to the generalized assignment problem, but with the only change being an extra
demand node which is connected to all i ∈ VT with cost of transmission being tid for
all i ∈ VT . One possible interpretation comes from an information flow networks area,
just with the flow going in the opposite direction. The demand vertex is associated
with a data server, supply vertices are associated with end users, and transshipment
nodes are associated with routing servers3. The goal is to assign routing in a such way
that the routing servers are not overloaded with information flow. The CUAx and
CUTx formulations would be identical to (24) and (23) but with the loads including
an extra term to equal fjdtjd +

∑
(i,j)∈E fijtij for all j ∈ VT and flow conservation

constraints for transshipment and demand nodes.
Using this network structure, we solved differently sized problems using Gurobi

Solver on a PC via a Python interface. Python code and full problem description can
be found online.4 Note that results are reported for random graph instances having
non-trivial solutions where the optimal objective does not equal 0 or |VT | : |VS | =
10,000; |VT |= T ; |VD|= 1; supply per supply node = 10; demand for demand node =
100,000 = (10)x(10,000); tij uniformly distributed in [0, 1]; threshold for CUAx = x
=.5 x 100,000 / T ; threshold for CUTx = x = .2 x 100,000 / T ; M = 100,000.

With this setup, we compared the performance of the MIP CUTx minimization
formulation and the LP CUAx minimization formulation for varying values of T . Run
time comparisons can be seen in Table 2. We see that the LP formulation has a clear
advantage as the number of transshipment nodes, i.e. the number of binary variables
in the MIP formulation, increases. Thus, we see that the CUAx minimization problem

3In this interpretation, flow goes from demand to supply, but the optimal flows are equivalent.
4http://www.ise.ufl.edu/uryasev/research/testproblems/logistics/

network-optimization-by-minimization-of-cardinality-of-upper-averages-cua/
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T MIP Run Time (seconds) LP Run Time (seconds)
100 2244.94 31.53
75 492.42 14.52
50 191.34 13.23
25 109.33 5.95
10 21.26 6.47

Table 2: Number of transshipment nodes, T , and approximate time to solve with Gurobi in Python
interface.

is significantly faster. For large problems, CUAx solving time will be dramatically
lower than MIP solving time.

4.1.2. Min Cost Network Flows. While the first two examples considered the
load put upon nodes, it is also quite natural to consider the load (or flow) on individual
arcs. The next two examples discuss problems of this type, where we would like to
minimize the number of arcs with large flow or large overall flow costs. One of the
most common network flow formulations is the Min Cost Network Flow problem [1].
In this formulation, M is a sufficiently large constant, fij indicates the flow through
edge (i, j) ∈ E, cij is the unit cost of flow, uij is the capacity, bi is the demand at
vertex i ∈ V where bi = 0 for i ∈ VT , bi > 0 for i ∈ VD, and bi < 0 for i ∈ VS .

(25)

min
f

∑
(i,j)∈E

cijfij

s.t.
∑

(i,j)∈E

fij −
∑

(k,i)∈E

fki = bi ∀i ∈ V,

0 ≤ fij ≤ uij .

However, this problem makes the critical assumption that all edge costs cijfij are
equally important which may not be a valid assumption (see e.g. chapter 14 of [1]). It
might be the case that we would not want any edge cost to exceed some level x. For
example, x may represent some budget associated with each arc and we do not want
to overload too many budgets. Of course, this may not be possible for all edges and we
may be forced to overload some budgets. Thus, this leads us to two possibilities for a
risk averse min cost network flow problem where we would like minimize the number
of edge costs that are large w.r.t. some threshold x. We have the CUAx minimization
(26), which has been reduced to a LP by the change of variable afij = yij , and the
CUTx minimization (27) which has been reduced to a MIP.

(26)
min
y,z,a

∑
(i,j)∈E

zij

s.t. zij ≥ cijyij − ax+ 1∑
(i,j)∈E

yij −
∑

(k,i)∈E

yki = abi,

0 ≤ yij ≤ auij .
a ≥ 0, zij ≥ 0.

(27)

min
f,ξ

∑
(i,j)∈E

ξij

s.t.
∑

(i,j)∈E

fij −
∑

(k,i)∈E

fki = bi

0 ≤ fij ≤ uij ,

ξij ≥
cijfij − x

M
,

ξij ∈ {0, 1}.
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Figure 3: (Top) Optimal CUT flow. (Mid-
dle) Optimal CUAx flow. (Bottom) Min
cost flow. Numbers of arcs represent fijcij

Figure 4: (Top) Optimal CUT flow. (Middle)
Optimal CUAx flow. (Bottom) Min cost flow
with arc costs equal to 1 and arc upper bound
equal to 10. Numbers on arcs represent fij .

Example 3: Consider the network in Figure 3, where we would like to push 24
units of supply through the network from the left black node to the right black node.
We have edge costs uniformly distributed on [0, 1] and we assume that each arc has
unbounded capacity and we set x = 3. The optimal CUAx, CUTx, and min cost flows
are shown in Figure 3. We notice, first, that the min cost flow has only 4 edges with
cost exceeding 3, but these costs are fairly large. The CUAx solution, on the other
hand, has three edges with cost exceeding 3, but with much smaller magnitude. The
CUTx solution only has one edge exceeding 3, but the magnitude of this edge is more
than four times the magnitude of the largest CUAx edge cost. We also see that the
CUAx flow is more spread out, with more edges being utilized. We also see that the
utilization is directly influenced by the threshold. With the CUTx flow, we have some
edge costs equal to the threshold, while the CUAx flow is almost opposite in that the
largest edge cost that is less than or equal to 3 is equal to 1.93. Thus, there is a buffer
between these smaller edge costs and the threshold which may be useful if costs or
other parameters are uncertain.

4.1.3. CUA and Capacity Planning. The capacity planning network flow
problem considers the situation where the current network is composed of arcs with
capacity that is not large enough so that all demand can be satisfied. Therefore, the
task is to figure out which arcs should have their capacity increased so that demand
can be satisfied. Of course, many variants of this problem exist that are tailored to
specific applications [11, 5, 4]. We consider, though, a generic variant where each arc
has initial capacity x, and we assume it will cost C to expand the capacity of any
arc to u.5 This problem can be posed as (28), a CUTx minimization network flow
problem where we expand capacity of the minimal number of arcs so that demand
can be satisfied.

5Arc expansion is a binary decision with fixed cost for all arcs.
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(28)

min
f,ξ

∑
(i,j)∈E

ξij

s.t. ξij ≥
fij − x
M∑

(i,j)∈E

fij −
∑

(k,i)∈E

fki = bi

0 ≤ fij ≤ u
ξij ∈ {0, 1}.

(29)
min
y,z,a

∑
(i,j)∈E

zij

s.t. zij ≥ yij − ax+ 1∑
(i,j)∈E

yij −
∑

(k,i)∈E

yki = abi

0 ≤ yij ≤ au
a ≥ 0, zij ≥ 0.

However, as we show in Example 4, the CUTx optimal solution can have unap-
pealing properties. Specifically, for the case of capacity planning, we see that the
CUTx optimal flow will likely fill all arcs to capacity (either u or x). This means that
the network may be very sensitive to changes in demand or arc failures. For example,
if one arc fails, it is unlikely that flow will be able to be diverted because all other arcs
are filled to capacity. As discussed in [11, 4], networks often require some capacity
buffer so that uncertainties do not lead to massive disruptions. Power grids are a
specific example considered in [4], where capacities on power lines are often violated
to serve all demand when lines may fail or some unplanned flow must be transmitted
across a power line. Thus, power grids, if designed without a buffer, can become
susceptible to cascading failure, or blackouts.

We consider the similar problem of minimizing CUAx, formulated as (29) where
we have again reduced to LP via the change of variable yij = afij . As we show
in Example 4, the CUAx optimal flow does not suffer from the same drawbacks as
the CUTx optimal flow. By considering the magnitude of components around the
threshold x, the CUAx optimal flow is more evenly spread among the arcs.

Of course, there are methods to directly mitigate the risk of cascading failures
by introducing new elements into the CUTx minimization formulation that consider
uncertainty. For example, [4] considers a scenario based approach, where flows must
satisfy demand for multiple scenarios, while [13] implements a robust optimization
approach in a similar fashion. However, introduction of additional components into a
MIP makes a numerically difficult optimization problem even more challenging. On
the other hand, without having to gather scenario information or consider uncertainty
directly, the CUAx optimal flow is able to mitigate some of the risks associated with
the CUTx optimal flow and may be less susceptible to cascading failures. In addition,
it is a simple LP, and uncertainty considerations can still be entered into the formu-
lation just as is done with the CUTx formulations.

Example 4: Consider the network in Figure 4, where we would like to push 24
units of supply through the network from the left black node to the right black node.
Assume that each arc has initial capacity x = 7, which is not sufficient to push flow
through the network, so we must decide which arcs to expand to capacity u = 10. We
assume that each expansion is a discrete decision that comes with a fixed cost C. We
see CUAx and CUTx optimal flows in Figure 4. First, we can see that if the CUTx
optimal flow utilizes an arc, it likely fills it to capacity (either 7 or 10). In contrast,
we notice that the CUAx optimal flow is more evenly distributed throughout the
network with all arcs having some buffer between their actual flow and their capacity
(7 or 10). We can measure the susceptibility to arc failure by measuring the expected
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amount of lost flow given a single arc failure, assuming equally probable failures6 and
we find that the CUAx flow has expected loss equal to 2 and that the CUTx flows
has expected loss equal to 2.66.

4.1.4. CUTx minimization is NP hard. It should be noted that the MIP for-
mulations we consider for CUTx minimization problems are Big-M type formulations.
Though there may be more efficient methods for formulating and approximating such
a MIP, e.g. by considering a Disjunctive Programming approach, we emphasize that
the CUTx minimization problem is NP hard. In this section, we prove that for arbi-
trary graphs, the CUTx minimization problem is NP hard. Therefore, regardless of
the strategy used to solve (exactly or approximately) the CUTx minimization prob-
lem, CUAx minimization will reduce to convex and linear programming which have
polynomial-time solvers.

In Proposition 4 we show that the problem of minimizing CUTx for an arbitrary
graph is an NP-hard problem with polynomial-time reduction from an NP-complete
set covering problem to CUTx minimization problem. The NP-hardness implies that
the considered problem is at least as hard as any P, NP, or NP-complete problem,
that is, time consumed by solving this problem will probably grow exponentially with
the size of the problem.

Proposition 4: CUTx minimization is an NP-hard problem.

Proof: The set covering problem is NP-complete. Solving a set-covering problem
with one run of the CUTx minimization problem of the same size will prove that
CUTx minimization problem is NP-hard. Suppose there is a set S consisting of sets
Si: S = {S1, . . . , Sn}, where Si ⊆ U ≡ {1, . . . ,m} = ∪ni=1Si. It is required to find
minimal covering set S∗ = {S∗1 , . . . , S∗k} with S∗k ∈ S and minimal k. Consider a
three-layer graph. On the first layer of the graph there are m demand vertices with
demand 1, each vertex corresponds to an object from the union set U . On the sec-
ond layer of the graph there are n transshipment nodes with demand/supply value
0, which correspond to sets Si. The first-layer vertex j and the second-layer vertex i
are connected iff j ∈ Si. The transportation costs along all edges are equal to 1. The
third layer of the graph consists of a single auxiliary supply vertex with the supply
m. CUTx is measured on the vector of loads for transshipment vertices which are
the same as those presented in Example 2, and the critical threshold is 0. That is,
if transshipment vertex is involved in transportation, its load is larger than 0 and it
violates the threshold. Finally, for the described graph it can be seen that picking a
covering subset with minimal number of sets is equivalent to minimizing the number
of overloaded transshipment vertices. �

5. Conclusion. In this paper, we have introduced a new concept called CUAx,
a function which counts the number of largest outcomes in a data set which have
average value equal to a specified threshold, x. As a basic characteristic for count-
ing tail outcomes, CUAx not only counts outcomes like CUTx, but accounts for the
severity of these outcomes which CUTx does not. We have also shown that CUAx

6To solve for the lost flow given an arc failure, we first take the network with the single arc
removed where all other arcs have capacity x or u (depending on whether they were expanded or
not). We then solve a max flow problem for that network where the output of the supply node is
limited to the original demand, which in this example equals 24. The lost flow from dropping the
single arc is then 24 minus the max flow for this new network.
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has superior mathematical properties, being a continuous function w.r.t. the thresh-
old parameter, piecewise linear in its reciprocal, and directly optimizable via convex
and linear programming. Thus, CUAx can be efficiently calculated, has continuity
properties which can be used for sensitivity analysis, and can be used to efficiently
minimize the number of outcomes in the tail of the data set, with the tail including
the largest outcomes that average to a specified threshold. We have shown that CUAx

is the inverse of UAk, a function that measures the average magnitude of the largest
k outcomes in a data set. We have also proved that CUAx and CUTx are strongly
connected, showing that CUAx is, in a certain sense, the minimal quasiconvex upper
bound of CUTx.

Finally, we have shown that CUAx can be use to formulate new network opti-
mization problems. We compare against similar formulations which minimize CUTx.
In addition to these formulations being less efficiently solvable, since they involved
binary variables, we find that the solution can often be unappealing. We show that
CUAx optimization, on the other hand, reduces to solving a LP and that by account-
ing for the severity of the largest outcomes, can lead to more appealing network flow
policies.
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Appendix A. CUAx: A special case of bPOE.

A.1. bPOE and Tail Probabilities. When working with optimization of tail
probabilities, one frequently works with constraints or objectives involving probabil-
ity of exceedance (POE), px(X) = P (X > x), or its associated quantile qα(X) =
min{x|P (X ≤ x) ≥ α}, where α ∈ [0, 1] is a probability level. The quantile is a
popular measure of tail probabilities in financial engineering, called within this field
Value-at-Risk by its interpretation as a measure of tail risk. The quantile, though,
when included in optimization problems via constraints or objectives, is quite difficult
to treat with continuous (linear or non-linear) optimization techniques.

A significant advancement was made in [15] in the development of an approach
to combat the difficulties raised by the use of the quantile function in optimization.
Rockafellar and Uryasev explored a replacement for the quantile, called CVaR within
the financial literature, and called the superquantile in a general context. The su-
perquantile is a measure of uncertainty similar to the quantile, but with superior
mathematical properties. Formally, the superquantile (CVaR) for a continuously dis-
tributed X is expressed as

q̄α(X) = E [X|X > qα(X)] .

For general distributions, the superquantile is defined by the following formula,

q̄α(X) = min
γ

{
γ +

E[X − γ]+

1− α

}
,

where [·]+ = max{·, 0}. Similar to qα(X), the superquantile can be used to assess
the tail of the distribution. The superquantile, though, is far easier to handle in opti-
mization contexts. It also has the important property that it considers the magnitude
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of events within the tail. Therefore, in situations where a distribution may have a
heavy tail, the superquantile accounts for magnitudes of low-probability large-loss tail
events while the quantile does not account for this information.

Working to extend this concept, bPOE was developed as the inverse of the su-
perquantile in the same way that POE is the inverse of the quantile. Specifically,
there exists two slightly different variants of bPOE, namely Lower and Upper bPOE.
Paper [9] defines so-called Lower bPOE in the following way, where supX denotes
the essential supremum of the random variable X.

Definition (Lower bPOE): Let X be a real-valued random variable and x ∈ R a
fixed threshold parameter. Lower bPOE of random variable X at threshold x equals

p̄Lx (X) =


0, if x ≥ supX ,

{1− α|q̄α(X) = x}, if E[X] < x < supX ,

1, otherwise.

In words, for any threshold x ∈ (E[X], supX), Lower bPOE can be interpreted as
one minus the probability level at which the superquantile equals x.

Similarly, paper [12] defines so-called Upper bPOE as follows.

Definition (Upper bPOE): Upper bPOE of random variable X at threshold x
equals

p̄Ux (X) =

{
max{1− α|q̄α(X) ≥ x}, if x ≤ supX ,

0, otherwise.

Upper and Lower, in fact, do not differ dramatically. This is shown by the following
property, proved in [12].

Upper vs. Lower bPOE:

p̄Ux (X) =

{
p̄Lx (X), if x 6= supX ,

P (X = supX), if x = supX.

It is important to notice that Upper and Lower bPOE are equivalent when x 6=
supX. The difference between the two definitions arises when threshold x = supX.
In this case, we have that p̄Lx (X) = 0 while p̄Ux (X) = P (X = supX). Thus, for
a threshold x ∈ (E[X], supX), both Upper and Lower bPOE of X at x can be
interpreted as one minus the probability level at which the superquantile equals x.
Roughly speaking, Upper bPOE can be compared with P (X ≥ x) while Lower bPOE
can be compared with P (X > x). To read further about the differences between
Upper and Lower bPOE, see [9].

A.2. CUAx and Upper bPOE. In [12], an important calculation formula for
bPOE was introduced. Specifically, [12] found that Upper bPOE has the following
calculation formula.

Proposition: Given a real valued random variable X and a fixed threshold x, bPOE
for random variable X at x equals
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(30)

p̄Ux (X) = inf
γ<x

E[X − γ]+

x− γ
=



lim
γ→−∞

E[X−γ]+

x−γ = 1 , if x ≤ E[X],

min
γ<x

E[X−γ]+

x−γ , if E[X] < x < supX,

lim
γ→x−

E[X−γ]+

x−γ = P (X = supX) , if x = supX,

min
γ<x

E[X−γ]+

x−γ = 0 , if supX < x.

With this calculation formula, we can then show that CUAx is simply a special
case of Upper bPOE. First, let us represent our deterministic vector (y1, y2, ..., yn) =
y ∈ Rn as a real valued discrete random variable Y taking on values (y1, y2, ..., yn)
with equal probabilities, i.e. P (Y = yi) = 1

n . Second, let us consider the quantity
np̄x(Y ). Using calculation formula (30) with the change of variable a = 1

x−γ , we see
that

(31)

np̄Ux (Y ) =min
a≥0

nE[a(Y − x) + 1]+

=min
a≥0

n∑
i=1

[a(yi − x) + 1]+ .

Thus, we see that this is exactly the definition of CUAx. In other words, we see
that CUAx is a deterministic variant of bPOE.
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