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Abstract In binary classification, performance metrics that are defined as the probability that some error
exceeds a threshold are numerically difficult to optimize directly and also hide potentially important
information about the magnitude of errors larger than the threshold. Defining similar metrics, instead,
using Buffered Probability of Exceedance (bPOE) generates counterpart metrics that resolve both of these
issues. We apply this approach to the case of AUC, the Area Under the ROC curve, and define Buffered
AUC (bAUC). We show that bAUC can provide insights into classifier performance not revealed by AUC,
while being closely related as the tightest concave lower bound and representable as the area under a
modified ROC curve. Additionally, while AUC is numerically difficult to optimize directly, we show that
bAUC optimization often reduces to convex or linear programming. Extending these results, we show that
AUC and bAUC are special cases of Generalized bAUC and that popular Support Vector Machine (SVM)
formulations for approximately maximizing AUC are equivalent to direct maximization of Generalized
bAUC. We also prove bAUC generalization bounds for these SVM’s. As a central component to these
results, we provide an important, novel formula for calculating bPOE, the inverse of Conditional Value-
at-Risk (CVaR). Using this formula, we show that particular bPOE minimization problems reduce to
convex and linear programming.

Keywords Buffered Probability of Exceedance - Conditional-Value-at-Risk - AUC - ROC Curve -
Buffered AUC - Support Vector Machine - Convex Programming - Classification Performance Metric -
Generalization

1 Introduction
In binary classification, some performance metrics can be defined as the probability that some error

function exceeds a particular threshold, i.e. by using Probability of Exceedance! (POE). For example, if
one uses misclassification error, Accuracy is one minus the probability that misclassification error exceeds
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the threshold of zero. The Area Under the Receiver Operating Characteristic Curve (AUC) is a popular
performance metric in classification that can also be viewed in this way, as the probability that ‘ranking’
error exceeds a threshold of zero. With a long history in signal detection theory [10, 35], diagnostic
systems analysis [34], and medical decision making [43], AUC has found much success as a measure of a
model’s ability to differentiate different classes of events. In machine learning, AUC has gained popularity
due to its advantages over Accuracy, particularly when one has no knowledge of misclassification costs
or must deal with imbalanced classes [3, 28, 27, 19, 7]. In both of these cases, AUC has benefits over
Accuracy, with Accuracy implying equal misclassification costs and heightened emphasis on correctly
classifying the majority class.

Defining metrics, like AUC, as the probability that some error exceeds a threshold, although intu-
itive, produces metrics with some properties that may be undesirable. First, these metrics only consider
the number of errors larger than the threshold and do not consider the magnitude of these errors which
exceed the threshold. This information, which can sometimes be viewed as the classifier’s ‘confidence,
may be important when gauging classifier performance. Additionally, there is evidence that considera-
tion of this information can lead to improved generalization, guaranteeing a classification margin when
optimally considered [38]. Second, these metrics are difficult to optimize directly. When dealing with em-
pirical observations of data, direct optimization of these metrics yields a non-convex and discontinuous
optimization problem. For example, with Accuracy it is common to utilize some convex surrogate to the
0 — 1 loss to attempt to optimize Accuracy (e.g., the hinge or exponential loss). With AUC defined with
POE, these issues are directly applicable.

Instead of defining metrics in this way, we take the approach of defining metrics with Buffered Prob-
ability of Exceedance (bPOE). Focusing our in-depth analysis on the case of AUC, we show that this
approach produces a metric that accounts for the magnitude of errors, with direct optimization of the
metric reducing to convex, sometimes linear, programming. Recently introduced as a generalization of
Buffered Probability of Failure, a concept introduced by [29] and explored further in [21] and [9], bPOE
equals one minus the inverse of the superquantile. The superquantile is also commonly known as the
Conditional Value-at-Risk (CVaR) from the financial engineering literature. In this regard, the first major
contribution of this paper is a novel formula for simultaneously calculating bPOE and POE. We show that
this important formula reduces many bPOE optimization problems to convex and linear programming. In
the more specific context of AUC, this formula is the key to producing most of our results.

Furthermore, we apply bPOE to the case of AUC to create a new, AUC-like counterpart metric called
Buffered AUC (bAUC). This new metric is indeed a counterpart to AUC. It is the tightest concave lower
bound of AUC. Like AUC, it measures a classifiers ability to discriminate instances belonging to positive
and negative classes. It can also be represented as the area under a modified ROC curve, which we call
the bROC curve. Additionally, we compare bAUC to two other AUC counterparts in the literature (sAUC
and pAUC) that attempt to account for the magnitude of errors in a similar way. We show, empirically,
that as a model selection metric, bAUC produces better models in terms of AUC and is thus more similar
to AUC.

With AUC defined with POE, it is extremely difficult to optimize directly, yielding a non-convex
and discontinuous objective function when faced with discrete observations. We show that bAUC has
substantial benefits in this regard, with direct optimization reducing to convex and linear programming.
We then introduce Generalized bAUC, a natural extension of bAUC, and show that this produces a family
of metrics, in which AUC and bAUC belong, all having interpretations as areas under modified ROC
curves. We then provide a formulation for optimizing Generalized bAUC and show that the popular AUC
maximizing RankSVM of [15, 4] is a special case of maximizing Generalized bAUC. Thus, we show that
bAUC has already found its way into the AUC maximization literature, albeit not explicitly, as an easily
optimizable metric alternative to AUC that leads to a classification margin. Additionally, this allows us to
reinterpret the RankSVM, showing that the tradeoff parameter is related to bPOE threshold and that the
optimal objective value is, in fact, equal to one minus Generalized bAUC.
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The result that the RankSVM is, in fact, directly maximizing bAUC to approximately maximize AUC
provides many new insights into this highly successful algorithm. First, the fact that bAUC is the tightest
concave lower bound of AUC provides evidence for why RankSVM is state-of-the-art in terms of AUC
maximization. Second, we can show that the objective value and trade-off parameter have interpretations
in terms of bPOE and its threshold. Third, we provide new insights into generalization bounds for the
RankSVM. Traditionally, generalization bounds for SVM’s are provided in terms of misclassification
rate, where the misclassification rate on the true distribution is bounded above by some function of em-
pirical error rate and a measure of the complexity of the hypothesis space. With the overall goal of the
SVM viewed as minimization of misclassification error, this is a sensible approach. We would like to
know if our classifier generalizes w.r.t. the metric we are attempting to optimize. After showing that the
RankSVM is a special case of bAUC maximization, we provide generalization bounds for bAUC. These
bounds also hold for AUC. Unlike many classical generalization bounds, ours is not controlled by the
complexity of the hypothesis space. It is controlled by the empirical bAUC and the threshold for Gener-
alized bAUC, i.e. the bPOE threshold. Thus, not only do we show that the RankSVM is simply a special
case of direct maximization of bAUC, we show that it generalizes w.r.t. bAUC and that bPOE threshold
plays an important role in this generalization.

The remainder of this paper is organized in the following manner. Section 2 reviews the AUC perfor-
mance metric and issues associated with AUC, including difficulties with direct maximization. Section
3 reviews superquantiles and bPOE. We then introduce an important calculation formula for bPOE and
show that under particular circumstances, minimization of bPOE can be reduced to convex, sometimes
linear, programming. Section 4 uses the bPOE concept to introduce bAUC. We discuss its value as a
natural counterpart to AUC as a classifier performance metric. We show that it can be presented as the
area under a modified ROC curve. We highlight that bAUC is the tightest concave lower bound of AUC
and that it can be easily optimized. We also provide an accompanying case study demonstrating available
software implementations for efficient calculation and optimization. Section 5 briefly illustrates the value
of the bROC curve and presents an empirical comparison with other AUC counterparts. Section 6 gen-
eralizes the bAUC definition, presents it as a family of modified ROC curves with corresponding areas
under these curves, and presents a formulation for maximizing this quantity. We then discuss its relation
to existing SVM-based AUC maximization formulations and prove their equivalence. Finally, we show
that these SVM’s generalize w.r.t. to bAUC by providing theoretical guarantees for performance w.r.t. the
true bAUC.

2 The AUC Performance Metric

In this paper, we consider the binary classification task where we have random vectors X, X~ in R" that
belong, respectively, to classes (Y = +1) and (Y = —1). We are given N samples X{, ..., Xy of the random
vector X = X7 UX ™, of which m™ have positive label, m~ have negative label, and we must choose a
scoring function % : R” — R and decision threshold ¢ € R to create a classifier with decision rule

v +1 ifh(X) >t
Y-l ifh(X) <t.

2.1 Defining AUC: Two Perspectives

AUC is a popular performance metric that measures the ability of a scoring function, A, to differentiate
between two randomly selected instances from opposite classes. As opposed to a metric such as Accuracy,
which considers the threshold 7, AUC does not and is a measure of separation between score distributions
h(X™) and h(X 7). In other words, while accuracy is a direct measure of a classifiers ability to properly
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Fig. 1: An example of an Empirical ROC curve for fixed / and data set consisting of samples of X. We plot the Empirical True
Positive Rate, P(h(X™) > t), on the vertical axis and the Empirical False Positive Rate, P(h(X ™) > t), on the horizontal axis for all
values of decision threshold 7 € R.

classify a single randomly chosen sample, AUC is concerned with a classifiers ability to properly rank
two randomly selected samples that are presumed to be in different classes. This is a beneficial measure
when classes are imbalanced or misclassification costs are unknown [3, 28, 27, 19, 7].

The AUC metric is defined as the Area Under the Receiver Operating Characteristic Curve (ROC
curve). Figure 1 shows an example ROC curve?, which plots the True Positive Rate, P(h(X ") > ), on
the vertical axis and the False Positive Rate, P(h(X ) > 1), on the horizontal axis for different values of
t. The AUC is the area under the curve formed by plotting pairs (P(h(X ™) >1t),P(h(X") > 1)) for all
thresholds ¢ € R. Specifically, we can write this in integral form. If we let P(h(X) > 1) = 1 — Fyx)(t) be
one minus the cumulative density function of 2(X), AUC for a scoring function 4 can be written as,

AUC(h) = /tP(h(XJ“) >1)dP(h(X™) >1). (1)

This paper is focused on an equivalent probabilistic definition of AUC provided by [14]. Hanley and
McNiel showed that the area under the ROC curve is equal to the probability that a randomly selected
positive sample will be scored higher than a randomly selected negative sample,

AUC(h) =P (h(X™) > h(X7)). )

With this paper focusing on POE and bPOE, we write AUC as one minus the probability of ‘ranking
error’ £(h) = — (h(X) —h(X ™)) exceeding zero®. Specifically,

AUC(h) = 1 — P(E(h) > 0).

Additionally, since the true distribution of X and X~ are rarely known, we often work with samples
X\, .., X" X[ ,...X . In this case, denote ranking errors as &;j(h) = — (h(Xi+) —h(X]’)) and let I

denote an indicator function of the condition A. We then have that AUC is approximated as,

1 mt m™ 1 mt m-
AUC(h) = pr— Z‘T leh(xi+)>h(xjf) =l- Zi leéi,-(h>20 :
i=1j= I=1j=

2 In this paper, our examples are Empirical ROC curves, where we have a fixed & and samples of the random variables X+, X .
3 Note that this is POE with a non-strict inequality.
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Furthermore, the ROC curve is estimated by plotting the True Positive Rate and False Positive Rate for
thresholds t € § = {A(X{"),...,A(X . ), A(X[),...,h(X )} on the ROC plot and connecting these points
by some means to make an ROC curve (e.g. throughout the paper, we simply use linear interpolation to
connect these points in our ROC plots).

For a more thorough introduction to AUC and the use of the ROC curve, we refer readers to [11].
Additionally, for a broader view of AUC and its relation to other performance metrics, we refer readers

to [16].

2.2 Properties of AUC

As a performance metric, AUC provides insight into the ranking quality of a classifier by considering
pairwise differences of scores given to samples from opposing classes. With each sample data point re-
ceiving a score, h(X;), the ordering of these scores (i.e. the ‘ranking’ induced by the scoring function) can
be an important indicator of classifier performance (see e.g. [5, 33, 7, 15]). Specifically, AUC considers
the distribution of ranking errors &;;(h), where a pair of samples X;", X, are properly ranked by h if
&ij(h) <0, and equals the proportion of ranking errors &;; < 0. AUC, though, does not consider the mag-
nitude of ranking errors, i.e. the confidence with which the classifier correctly or incorrectly ranks pairs of
samples. Therefore, if the magnitude of ranking errors is an important performance indicator, AUC may
not be a desirable performance measure. This characteristic parallels that of Value-at-Risk (VaR) in Fi-
nancial Engineering. It hides potentially important information about tail behavior by failing to consider
the magnitude of tail losses.

Maximizing AUC is also a challenging task, as it is akin to probability minimization for discrete
distributions, an optimization task which yields a discontinuous and non-convex objective function. Many
AUC optimization approaches exist (see e.g. [4, 22, 18, 7, 17, 23]). These approaches, though, utilize
approximations of the AUC objective and do not optimize AUC directly. For example, [22] optimizes
an AUC approximation by replacing the indicator loss with a continuous sigmoid function. This yields a
continuous optimization problem, though still non-convex.

3 bPOE and bPOE Optimization

With AUC defined as the one minus the probability that ranking error exceeds zero, we explore the use
of a counterpart to POE called bPOE. Specifically, a generalization of Buffered Probability of Failure
[30], bPOE is the inverse of the superquantile (CVaR) defined in [31]. In this section, after reviewing
these concepts, we present a novel formula for bPOE that simultaneously calculates POE. We show that
this formula allows certain bPOE minimization problems to be reduced to convex, sometimes linear, pro-
gramming. This result is particularly important when we apply bPOE to create bAUC in Section 4.

3.1 bPOE and Tail Probabilities

When working with optimization of tail probabilities, one frequently works with constraints or objec-
tives involving probability of exceedance (POE), p,(X) = P(X > z), or its associated quantile g4 (X) =
min{z|P(X <z) > a}, where o € [0,1] is a probability level. The quantile is a popular measure of tail
probabilities in financial engineering, called within this field Value-at-Risk by its interpretation as a mea-
sure of tail risk. The quantile, though, when included in optimization problems via constraints or objec-
tives, is quite difficult to treat with continuous (linear or non-linear) optimization techniques.
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A significant advancement was made in [31, 32] in the development of an approach to overcome the
difficulties raised by the use of the quantile function in optimization. They explored a replacement for
the quantile, called CVaR within the financial literature, and called the superquantile in a general context.
The superquantile is a measure of uncertainty similar to the quantile, but with superior mathematical
properties. Formally, the superquantile (CVaR) for a continuously distributed X is defined as

3o (X) = E[X|X > ga(X)].
For general distributions, the superquantile can be defined by the following formula,

- . EX—v*
Ga(X) =miny+=7— " 3)
where [-]* = max{-,0}.

Similar to g4 (X), the superquantile can be used to assess the tail of the distribution. The superquantile,
though, is far easier to handle in optimization contexts. It also has the important property that it considers
the magnitude of events within the tail. Therefore, in situations where a distribution may have a heavy
tail, the superquantile accounts for magnitudes of low-probability large-loss tail events while the quantile
does not account for this information.

Working to extend this concept, bPOE was developed as the inverse of the superquantile in the same
way that POE is the inverse of the quantile. Specifically, bPOE is defined in the following way, where
sup X denotes the essential supremum of random variable X.

Definition 1 ([21]). bPOE of random variable X at threshold z equals

_ max{1l — |Gy (X) >z}, ifz<supX,
pe(x) = M - a0 = 2} )
0, otherwise.

In words, bPOE calculates one minus the probability level at which the superquantile equals the
threshold. Roughly speaking, bPOE calculates the proportion of worst case outcomes which average to z.
We note that there exist two slightly different variants of bPOE, called Upper and Lower bPOE. For this
paper, we utilize Upper bPOE. For the interested reader, details regarding the difference between Upper
and Lower bPOE are contained in the appendix.

3.2 Calculation of bPOE

Using Definition 1, bPOE would seem troublesome to calculate. In fact, it is not even clear how one would
go about calculating bPOE exactly. For example, using (1), one would need to calculate the superqunatile
for many different probability levels until it was equal (or close) to the threshold z. Here, one would need
to, for example, use binary search to find the proper probability level.

In Proposition 1, we introduce the first explicit calculation formula for bPOE. We view this new
formula as a critical step in development of the bPOE concept. Not only are we the first to propose such a
calculation formula for bPOE, but we show that this formula allows some bPOE minimization problems
to be reduced to convex and linear programming. Additionally, calculating bPOE at threshold z with
this formula allows simultaneous calculation of the threshold y at which P(X > y) = p.(X), providing
information about bPOE and POE at the same probability level.

For Proposition 1, we differentiate between the upper quantile g, (X) = inf{x|P(X < x) > a} and
the lower quantile g4 (X) = min{z|P(X < z) > a}. For details regarding the subtle differences between
the upper and lower quantile, see [32]. Note, though, that for continuously distributed X, we have that
g% (X) = ga(X). Furthermore, in practice, for discretely distributed X (e.g. empirical distributions based
upon a finite number of observations) the difference between these values is often very small.
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Proposition 1. Given a real valued random variable X and a fixed threshold z, bPOE for random variable
X at z equals

Jim FEE =1, ifz<E[X],
5,(X) = i EX—y* rg/zg%, fE[X] <z <supX, \
P )—%é -y ﬂﬁﬂé%t=ﬂx=&mxk ifz = supX , “
"}i’é%:m if supX <z.

Ayt
Furthermore, if z € (E[X],supX) and mén% =1 — «, then the set of minimizers is given by the
<z

interval [qo(X),q% (X)), or equivalently {y|y€ [qa(X),q4(X)]} = argmin%. Moreover, for the
<z

left-endpoint of this interval, ¥* = qo(X), we have that P(X > v*) = p,(X).

Proof. We prove four cases. Note that case 1 and 3 coincide for constant random variable X, when

z=supX.

Case 1: z < E[X].
Assume z < E[X]. First, note that 5,(X) = max{1 — |G (X) > z} = 1. This follows from the fact that
Go(X) = E[X]. Then, notice that

]t
inf BN o g X Y g )
Y<z =Y 0<z—y Z2—=Y 2Z—7
Letting a = ﬁ, we get
inf E[L—L]’L:infE[aXJra(l—z)]J’:infE[a(X—z)+l]+. (6)
0<z—y Z2—Y z2—Y a>0 a a>0

Now, 0 <E[X]—z = foreverya>0,E[a(X —z)+1]" > E[a(X —z) +1] > a(E[X] —z)+ 1 > 1. This
implies that,
0 € argmin E[a(X —z)+1]" .
a>0
Then, notice that since 0 € argmin E[a(X —z) + 1] and that for every a > 0, E[a(X —z) +1]T > 1 we
a>0

have that

infEla(X —z)+1]" =minE[la(X —2)+ 1]" =E[0(X —2)+1]T =1.

a>0 a>0

Finally, noting that if a = ﬁ then lim(;_) ﬁ =0=aand

E[X —y]* E[X —y]*
inf EX =" =min Efa(X —2)+1]T =E[0(X —2)+1]" = lim EX =" =1.
0<z—y z—79 a>0 (z=y)=ee  ZY

Case 2: E[X] < z < supX.
Assume that E[X] < z < supX. This assumption and Definition 2 imply that

p(X) = max{1 - &la(X) > 2} = min{1 - ala(X) <2} )
Recall the formula for the superquantile given in [31],

. EX -yt .
du(X) = min [}/+ [l—o}c/}] = min gX,a,7) . 8)
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Note also [32] states that if y* € argmin g(X, ct,¥), then

Y
Ga(X) =7+ % and ¥* € [ga(X),q4 (X)], which is the complete interval of minimizers.
Next, using (7) and (8) we get

pZ(X):min{l—a:m;ng(X,a,y)Sz}. )

Then, considering (8) we can write (9) as,

ﬁZ(X):r(rxl};) -«
10)
E[X —9y]*" (
.z —<z.
’ T I—a —°

Let (v*, o) denote an optimal solution vector to (10). Since z < supX, the formula (8) implies that
V' € g0 (X), 40 (X)] = 7" <dar(X)=2z.

This implies that ¥* < z. Explicitly enforcing the constraint y < z allows us to rearrange (10) without
changing the optimal solution or objective value,

p:(X)=min 1—-a

ay<z
E[X _ ]+ (1 1)
st l—a>——— .
=7
Simplifying further, this becomes
_ . EX-—9y"
= _— 12
P:(X) =min P (12)

Case 3: z =supX.
Assume z = supX. First, note that p,(X) = max{1l — |G (X) > z} = P(X = supX). This follows from
the fact that §(;_p(x—supx))(X) = supX. Next, recall that with (5) and (6) for a = ﬁ, we get
E[X —v]"
inf EX=v" =infEla(X —z)+1]".
<z =Y a>0

Since supX — z = 0, we have

inf E[a(X —z)+ 1] = lim E[a(X —z) + 1]" = P(X = supX) .

a>0 a—roo
To see this, notice that for any realization Xy of X, where Xo —z < —1, we get [a(Xo —2z) + 1]* = 0.
Furthermore, for any realization X; of X where X; = supX = z we have that [a(X; —z)+ 1]t =[0+1]" =
1. Thus,

a

1
1211E[a(X—z)+1]+ =0x (1131P(X—z< —)) +1+P(X =supX)=P(X =supX).
a—o0 a—roo

Case 4: z > supX.

Assume that z > sup X. First, note that p,(X) = 0. This follows immediately from Definition 2 (i.e. the
1

‘otherwise’ case). Next, recall again that with (5) and (6) for a = = We get

_ At
inf BN i Bla(x — )+ 1)
<z =7 a>0
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Since supX —z < 0, then for any 0 < a < z—supX we have that P(% < —1) =1 implying that E[% +
1]* = 0. This gives us that

inf Ea(X — 1]" =min Efa(X — 1" =0.
inf Ela(X —z) + 1] = min Efa(X —2) +1]" =0

O

Thus, via Proposition 1 we have provided a surprisingly simple formula for calculating bPOE that is
similar to formula (3). In the following section, we show that the true power of formula (4) lies in the fact
that it can be utilized to reduce particular bPOE minimization problems to convex, sometimes even linear,
programming. In fact, the impact of this formula has already been seen in papers following this work. In
particular, our formula (4) has already been used in a number of studies, including [24, 21, 9, 20, 37]. In
particular, in [21], a paper which followed this work, our formula (4) is used extensively to derive key
properties of bPOE and more general convex reformulations of bPOE minimization.

3.3 bPOE Optimization

To demonstrate the ease with which bPOE can be integrated into optimization frameworks, particularly
when compared to POE, consider the following optimization setup. Assume we have a real valued positive
homogenous random function f(w,X) determined by a vector of control variables w € R" and a random
vector X. By definition, a function f(w,X) is “positive homogeneous” with respect to w if it satisfies
the following condition: af(w,X) = f(aw,X) for any a > 0,a € R. Note that we consider only positive
homogeneous functions since they are the type of error function we consider in the case of AUC.

Now, assume that we would like to find the vector of control variables, w € R”, that minimize the
probability of f(w,X) exceeding a threshold of z = 0. We would like to solve the following POE opti-
mization problem.

min  po(f(w,X)) . 13)

weR”
Here we have a discontinuous and non-convex objective function (for discretely distributed X) that is
numerically difficult to minimize. Consider minimization of bPOE, instead of POE, at the same threshold
z=0. This is posed as the optimization problem

min - po(f(w, X)) (14)

Given Proposition 1, (14) can be transformed into the following.

— vt
min | ESwX)—Y]
weR",y<0 -y

(15)

Notice, though, that the positive homogeneity of f(w,X) allows us to further simplify (15) by getting rid
of the 7y variable. Thus, we find that bPOE minimization of f(w,X) at threshold z = 0 can be reduced to
(16).

min  E[f(w,X)+1]". (16)

weR?
For convex f, (16) is a convex program. Furthermore, if f is linear, (16) can be reduced to linear pro-
gramming. This is substantially easier to handle numerically than the non-convex and discontinuous POE
minimization (13).

Given the attractiveness of bPOE and the superquantile within the optimization context, we are in-
clined to apply these concepts to define a bPOE variant of AUC. Not only would this buffered variant
give way to more well behaved optimization problems, but it would provide a measure of classifier per-
formance that considers the magnitude of ranking errors &;;(h) instead of only a discrete count of the
number of ranking errors exceeding zero.
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Distribution of Ranking Errors

bAUC=0.6074 vs. AUC=0.8316

Ranking Errors: ¢, 1)

1

= 0 3
Ranking Errors: (1)

Fig. 2: In both charts, we plot the same distribution of rank-
ing errors &;;(h) for a fixed h. In the top chart, we highlight
the largest errors that have average magnitude equal to zero,
i.e. the errors considered by bAUC. In the bottom chart, we
highlight the errors that exceed zero, i.e. the errors consid-

Modified ROC Curve

1.0

7)

P(h(X*)>t—

0.0 0.2 0.4 0.6 0.8 1.0
P(h(X )>t)

Fig. 3: We have a fixed classifier 4. The area under the
upper curve corresponds to AUC(h), where y* = 0. The
area under the lower curve corresponds to bAUC(h), where
Y <O0.

ered by AUC. We have that bAUC=.6074 and AUC=.8316.

4 Buffered AUC: A New Performance Metric
4.1 Buffered AUC

With AUC defined as 1 — P (& (h) > 0), we can create a natural alternative to AUC called Buffered AUC
(bAUC) by using bPOE instead of POE. If we assume that we have samples of our random vectors
X*,X~ and are thus working with the empirical distribution of ranking errors &;;(h), we have that bAUC
equals one minus the proportion of largest ranking errors &;;(h) that have average magnitude equal to
zero. Specifically, we have the following general definition.

Definition 2 (Buffered AUC). For a scoring function h : R" — R, bAUC of h is defined as
a7

To begin, we can look at a graphical example comparing bAUC and AUC in Figure 2. Here, we plot
the distribution of ranking errors &;;(h) for a fixed scoring function & for some dataset. In the bottom chart,
we highlight the errors exceeding zero, i.e. the ranking errors considered by AUC. Thus, in the bottom
chart, AUC equals one minus the proportion of errors larger than zero. In the top chart, we highlight the
largest errors that have average magnitude equal to zero, i.e. the ranking errors considered by bAUC.
Thus, in the top chart, we see that bAUC is smaller than AUC, as it considers not only errors larger than
zero but also some negative errors most near to zero.

This metric, utilizing bPOE instead of POE, is similar to AUC. Both are concerned with ranking
errors, measuring the tail of the error distribution £ (k). In fact, as shown below in Proposition 2, bAUC
is a lower bound for AUC. Thus, classifiers with large bAUC necessarily have large AUC. Moreover, we
find that bAUC is not simply a lower bound of AUC, but it is the unique maximal quasi-concave lower
bound. This effectively means that there does not exist a concave function that is a tighter lower bound
of AUC. Note that Proposition 2 is simply a special case of the result in [21] showing that bPOE is the
minimal quasi-convex upper bound of POE.

bAUC(h) =1— po (& (h)).

Proposition 2. For a scoring function h: R" — R,

bAUC(h) < AUC(h) .
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Furthermore, let & = {&(h) | h: R" — R,E[§(h)] < |} denote the space of random variables (er-
rors) with finite expectation. Among law-invariant* functions on ., bAUC is the unique maximal quasi-
concave lower bound of AUC. (i.e. If g : ¥ — R is quasi-concave and g(h) < AUC(h) for all scoring
functions h : R" — R, then g(h) < bAUC(h) for all scoring functions h : R" — R.)

Proof. From [21], we know that for any threshold z € R and real valued random variable X that, P(X >
2) < pu(X). Therefore, 1 — o (E(h)) < 1 — P(E(h) > 0).

Furthermore, from [21], we know for any threshold z € R that p,(X), as a function over the space of ran-
dom variables X with finite expectation, is the minimal quasi-convex upper bound of P(X > z). Therefore,
it follows that 1 — p,(X) is the minimal quasi-concave lower bound of 1 — P(X > z). O

Unlike AUC, though, bAUC is sensitive to the magnitude of ranking errors & (k). In addition, bAUC
does not only consider ranking errors, meaning incorrectly ranked pairs of points with &;;(h) > 0. It also
takes into account the confidence with which the classifier correctly ranked some instances, meaning the
‘errors’ &;;(h) that are less than, but most near to zero. These correctly ranked instances constitute the
buffer. We discuss this concept and other differences further in the next section.

We also mention here that penalizing a classifier for some errors that are less than, but most near to
zero is reminiscent of certain convex surrogates for the 0-1 loss, such as the hinge loss or log-loss. It is well
known in the machine learning literature that this property is beneficial for generalization, as it promotes a
classification margin (see e.g. [38]). In later sections, we will see this connection emerge further. First, we
will see that bAUC maximization reduces to minimizing a form of expected hinge loss. Furthermore, we
will see that a more general form of bAUC maximization shares fundamental connections with SVM’s, a
formulation which also minimizes a form of expected hinge loss.

4.2 The bAUC Buffer and Sensitivity to Classifier Confidence

Focusing on the benefits of bAUC’s sensitivity to the magnitude of ranking errors &;;(h), we provide two
examples illustrating situations where two classifiers give the same AUC, but where one of the classifiers
is clearly a better ranker than the other. We show how bAUC reveals this discrepancy. The first example
focuses on the importance of the bAUC buffer. The second example simply illustrates a situation where
the magnitude of the ranking errors larger than zero, &;;(h) > 0, would be important when selecting
between classifiers.

As already mentioned, bAUC considers the magnitude of the positive errors, &;;(h) > 0. Importantly,
bAUC also considers the magnitude of the ‘errors’ that are less than, but most near to zero. This buffer
may be important as illustrated in the following example. Let /) be an indicator function as specified in
Section 2.1. Consider the task of comparing the ranking ability (on the same data set) of two imperfect
classifiers®, h; and hy, that have equal AUC values, meaning that

1 1
(a) (1 a MZZ’&U<M)20> - (1 Comtme ZZIéij(hZ)E()) >0.
[ o

Assume also that both classifiers produce incorrect rankings with the same magnitude (i.e. confidence),
meaning that

(b) é,‘j(/’ll) =1V <i7j> with é,‘j(/’ll) >0 and 5,’](112) =1V (i,j) with §,~j(h2) >0.

4 A function g of a random variable is law-invariant if g(X) = g(¥) for any two random variables X, Y having the same distribu-
tion w.r.t. the underlying probability measure. See e.g. [13].

3 Although we say “classifier”, we are omitting the decision thresholds 1,1, since they are not necessary for AUC and bAUC.
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Finally, assume that /| produces correct rankings more confidently than s,, where

(¢) ¥ (i, ) such that &;(h1) < 0 we have that §;;(h;) < rrvliknka(hz) .

From (a), we see that both classifiers will have equal AUC. Then from (b), we see that the classifiers
have identical distributions of errors greater than or equal to zero. But finally, considering (c) reveals
that the distribution of negative errors (i.e. the correct rankings) for /; is more favorable than that of ;.
Thus, we see that /i is superior w.r.t. ranking ability. The AUC metric does not reveal this fact, since
both classifiers have equal AUC. The bAUC metric, though, because of the buffer, correctly distinguishes
between the ranking ability of /41 and £,. Specifically, we will find that bPAUC(h;) > bAUC (hy) with the
buffer accounting for the magnitude of errors not only in (b), but also in (c).°

Ilustrating a similar situation, not necessarily involving the buffer but instead involving bAUC’s sen-
sitivity to the magnitude of positive ranking errors, consider again two classifiers, 41 and h,, with equal
AUC (i.e. satisfying (a)). Assume also that both classifiers produce correct rankings with the same mag-
nitude (i.e. confidence), meaning that

(d) &ij(h) =—=1V (i,j) with §;(h1) <0and &;(h2) = —1 V (i, j) with &;;(h2) <O.
Finally, assume that A, produces incorrect rankings more severe than those produced by h;, where

(e) V (i,)) such that &;;(hy) > 0 we have that §;;(hy) > max Ex(h) .
s,

From (a), we see that both classifiers will have equal AUC. Then from (d), we see that the classifiers have
identical distributions of errors less than zero. But finally, considering (e) reveals that the distribution of
errors larger than or equal to zero (i.e. the incorrect rankings) for /; are more favorable than that of ;.
Once again, AUC indicates that these classifiers perform equivalently with respect to ranking ability. The
bAUC metric, though, by considering the magnitude of errors, is able to properly distinguish between the
two classifiers. Specifically, because of (d) and (e), we will have that bAUC(h;) > bAUC (hy).”

We note that, for both examples, it is possible to detect the difference in ranking error distributions
without bAUC. For example, one could measure P(& () < ¢) multiple times, over a range of different
t € R, for each classifier . With bAUC, though, we have a single metric that can reveal this difference
and only needs to be measured once for each classifier.

4.2.1 Remark on Use Cases

In the Section 4.1 examples, the data and error distributions were artificial. Thus, we did not prescribe any
real-world meaning to the magnitudes of ranking errors. In practical applications, there are cases where
these errors do have meaning which can be important when assessing the performance of a classifier.
In particular, we can consider applications in which the score given to a data point 4(X) gives some
indication of predictive confidence. For example, it is common to have A(X) represent a calibrated class
probability estimate, see e.g. Platt Scaling from [26] or Isotonic Regression from [41, 42]. Here, the
magnitude of h(X) is reflective of the degree of belief that X belongs to a particular class. Thus, the
magnitude of ranking errors will serve as an indicator of the quality of these degrees of belief, with large
ranking errors indicating that a distribution of scores may lead to poor class probability estimates or
provide misleading degrees of belief regarding class membership.

Consider, first, the task of disease detection. This is an application in which AUC is very popular. First,
AUC does not make any assumptions about misclassification costs, which can be difficult or unethical to
prescribe in medical applications. Second, it does not need a classification decision threshold to assess

6 We do make the assumption that PAUC (l) # 0, which is to assume that E[& (h;)] < 0.
7 Again, we make the assumption that PAUC(h) # 0, which is to assume that E[& (k)] < 0.
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performance. In medical applications, it may be necessary to specify the decision threshold after the
model (or scoring function) has been developed. For example, it may be desirable to fix the proportion of
false positives or false negatives, but the desired proportion may change over time, across applications,
or may not be available when devising the model (see e.g. [16] for a discussion of different threshold
choice methods). Both of these beneficial characteristics are present with bAUC as well, i.e. no need for
specifying misclassification costs or decision thresholds. Thus, bAUC is a justifiable compliment to AUC
in this case.

For disease detection, though, the score given to a patient 2(X) may signify the predicted severity
of the disease (e.g. the size of a tumor), or may be the predicted probability of class membership. In
this case, the magnitude of a ranking error &;;(h) has significance. For example, a large ranking error
&ij(h) > 0, as opposed to a small one, could indicate that the model will assign a diseased patient with
a very low probability of being diseased. Used in practice, this low probability estimate could lead to
far fewer additional tests or preventative measures that would have otherwise been taken if the predicted
probability was not so low.

This argument also applies to financial applications. For example, consider credit default prediction.
This is also an application in which AUC is very popular given its lack of assumptions regarding misclas-
sification costs and decision thresholds. Just as in disease prediction, misclassification costs and a proper
decision threshold may change over time, vary from application to application, or may be unknown when
devising a model. Additionally, scores given by a classifier may be predicted probabilities of default. Fur-
thermore, these probabilities may be considered when calculating the size of the loan made available to
the individual. Thus, if a ranking error &;;(h) > 0 is large, the classifier may not only predict that a ‘de-
fault’ customer is actually worthy of a loan, but subsequent uses of the associated predicted probability
may indicate that this individual is worthy of a fairly large loan. In other words, if the scores h(X) are
indicative of the models predictive confidence, this information may be used in future modeling tasks,
and bAUC considers this aspect of performance while AUC does not.

4.3 bAUC and the ROC curve

As discussed in Section 2.1, AUC can also be defined as the area under the ROC curve. We show here
that bAUC can also be represented as the area under a slightly modified ROC curve, which we call the
Buffered ROC (bROC) curve.

Proposition 3. For a fixed scoring function h : R" — R, assume that
h)—v"

7E[§ (h_)y_* Tl where y* € arff(z)inE_y )

and y* is the smallest minimizer (i.e. the left endpoint of the argmin interval). Then,

PAUC(h) =1-a=1—

AUC(h) /,P (h(X*) > 1—7)dP (h(X") >1).
Proof. This follows from Proposition 1, specifically the fact that if z € (E[X],supX) then for any y €
[9a(X),qZ (X)] we have y € argmin% and thus for the left-endpoint of this interval, ¥* = g4 (X),
we have that P(X > v*) = p,(X )7< IZApplying this to bAUC, we get that
bAUC(h) =1—po (—h(X")+h(X7)) =1—P(—h(X")+h(X") > ")
=P(~h(X")+h(X")<y")=P(h(X")+7" = h(X"))

- /P ((XT) > 1—y")dP (h(X™) >1) .
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Proposition 3 is shown graphically in Figure 3 with a slightly modified ROC plot. Here, instead of
plotting the pairs (P(h(X ™) >t),P(h(X") > 1)) for all thresholds ¢ € R to generate an ROC curve, we
plot the pairs (P(A(X™) >1t),P(h(X™) >t —v¥*)) for all thresholds ¢ € R to generate the bROC curve.
This yields a curve on the modified ROC plot that has area underneath it equal to bPAUC(h).

We can also interpret the bROC curve as the normal ROC curve of a more conservative scoring
function / with positive class score distribution 2(X*) = h(X*)+¥* and negative class score distribution
h(X~) = h(X~).5 We have shifted the distribution of positive class scores toward the distribution of
negative class scores by the amount y*. By Proposition 4, we know that y* = {z € R | E[§(h)|&(h) > 7] =
0} < 0. Therefore, since ¥* is determined by the tail of the error distribution & (%), the bROC curve is the
ROC curve of a conservative variant of the original scoring function, where the magnitude of conservatism
is based upon the ranking errors produced by the scoring function A.

We can also use this to interpret bAUC as a more conservative version of AUC that considers, more
heavily, the extreme errors while additionally considering the worst pairs of points that were correctly
ranked. In other words, while AUC considers only the count of errors, bAUC conservatively considers
the severity of the worst incorrectly ranked pairs of points and, to possibly balance this conservatism
out, it considers the confidence with which the classifier correctly ranked the pairs of points that are most
poorly ranked, but still correct. For example, consider a classifier with AUC= .7, where m™m™ = 100 and
the ordered list of ranking errors is {&(1) () £(100} ‘where E(D < E?) < .. < £(100) This means
that 30 pairs were incorrectly ranked with ranking errors larger than or equal to zero, i.e. 5(69> <0<
5(70) < 5(71) <...< 5“00). Now, if nggoé(i) = —é(ﬁg), we will have that bAUC= .69. Thus, in this
case, although bAUC is more conservative than AUC, we find that the classifier correctly ranked 69 of the
100 pairs with enough confidence to offset the magnitude of the 30 errors from the 30 incorrectly ranked
pairs. If, though, the errors less than, but most near to zero, were closer to zero, we would find that bAUC
would be smaller, reflecting the conservatism w.r.t. the extreme errors.

4.4 Optimizing bAUC

Direct maximization of AUC is rarely done due to the troublesome properties of probabilistic objectives,
even for the simplest classifier such as the linear classifier #(X) —t = w! X —t, w € R". Direct maximiza-
tion of bAUC, on the other hand, reduces to convex programming and linear programming for the linear
classifier. Let & (w) = —w! (X* — X ). Maximization of AUC takes the form,

max 1-P(&(w)>0), (18)

weR?

where the probabilistic objective is discontinuous and non-convex when dealing with empirical observa-
tions of X and X ~. Maximization of bAUC takes the form

max 1 —po (§(w)) = 1—min po(§(w)) - (19)

weR” weR”?

Applying Proposition 1, and given the positive homogeneity of & (w), (19) becomes

o Ew) - T
1 Well}l}%%@_iyf{}lelﬂ%ﬁ['é(w)%—l] . (20)

In financial optimization literature, the function E[.] is called Partial Moment. It is a very popular func-
tion in various applications of stochastic programming. Here, (20) is a convex optimization problem and,
moreover, can be reduced to linear programming with reduction to (21) via auxiliary variables. Thus, in

8 The choice of score distribution to shift is arbitrary. One can shift #(X ™) by —y*.
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the case of a linear classifier, maximizing bAUC is substantially easier to handle than AUC maximization,
a non-convex and discontinuous optimization problem.

1 mt m~
min ij
weR", B;; R mtm~ i=le=1ﬁ] 21
s.t. ﬁ,-jZQ'j(w)Jrl,Vizl,...,m+,j:1,...,m_

Bij>0.

In practical applications, of course, the linear classifier found by solving (20) or (21) may not gen-
eralize to unseen samples (i.e. a testing set separate from a training set). This is why it is common in
machine learning applications to include some type of regularization or non-linear classification algo-
rithm. In Section 6.1, we cover one method for adding SVM-like regularization. We mention, though,
that formulation (20) or (21) may still be useful. It is increasingly common in applied machine learning to
engineer features for linear models® and/or to perform an iterative feature selection methodology. Thus,
this simple linear formulation would be highly applicable in this context and may generalize quite well
if features are engineered and selected properly for the application domain. We do not fully explore this
use of (20) or (21), as the problem of feature engineering and selection is highly problem dependent.

Furthermore, we mention that, even if one is only interested in maximizing AUC, one should con-
sider bAUC as a good surrogate. It is often desirable for the same reasons as AUC, e.g. no dependence on
decision threshold or misclassification costs, but it is far easier to optimize, yielding a convex objective.
Thus, it may turn out that direct optimization of bAUC is the best heuristic for optimization of AUC in
particular applications. This is explored further in Section 6, as we show that existing attempts to approx-
imately optimize AUC in the SVM context are equivalent to direct maximization of bAUC. Moreover,
this would make sense in light of Proposition 2, with bAUC acting as the tightest lower bound of AUC
that is concave.

4.5 Software Implementation
4.5.1 Calculating bAUC and the bROC Curve

For interested readers, Python code is available for calculating bAUC and plotting the bBROC curve.'? We
mention, also, that this code contains two implementations for calculating empirical bAUC from a sample.
The first is a simple method which calculates empirical bAUC approximately, growing more accurate as
sample size grows. For this, one first creates a list of losses, &;j(h), ordered from smallest to largest. Then,
beginning at the largest loss, one simply takes a running average, moving from largest to smallest loss,
stopping when the average becomes less than or equal to zero. Assuming there are m*m™ losses in the
list, and that the running average contained the sz largest losses, we have that bAUC is approximately
equalto 1 — m+’”7 Specifically, if the average of the worst 7i2 losses is zero, you will get empirical bAUC
exactly with no error. If the average of the worst 72 losses is less than zero (i.e. the average of the worst

m — 1 losses is greater than zero), then this procedure will under-estimate empirical bAUC by at most
1
.
" mThe second method calculates empirical bAUC exactly by solving the following convex program for

fixed A,

m* m~

Y ][aé,»j(h) +1]". (22)

i=1j=

min
a>0 mtm~

9 A simple example would be the bag-of-words model, while an advanced example would be the linear SVM pipeline described
in [39].
10" http://www.ise.ufl.edu/uryasev/research/testproblems/advanced-statistics/case-study-bAUC-maximization/
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Just as we did for (20), this convex program can be recast as a linear program with additional auxil-
iary variables. The benefit of this formulation is that it solves for empirical bAUC exactly. Using any
convex or linear programming solver (e.g. we use Gurobi within our Python code), this can be quickly
solved for moderate sample sizes. The drawback is that for large sample sizes, there are m™m™ terms
in the objective sum, and an additional m™m™ constraints when reformulated as a linear program. Thus,
many commercially available solvers struggle when sample size grows, specifically suffering from mem-
ory issues. However, we point out that solvers are available which exploit the problem structure of (22),
avoiding issues with the ¢’ (m™m™) memory requirement. Portfolio Safeguard (PSG)!! is one such soft-
ware, for which an academic license can be obtained for free. For the interested reader, we have posted
example PSG code on the same page where Python code is available.

4.5.2 bAUC Optimization for Linear Classifiers

For linear classifier #(X) —t = w/ X —t, w € R" the maximization of bAUC reduces to bPOE mini-
mization for linear function & (w) = —w? (X —X7) = —wI X +wX ", see (19) and (20). Although this
minimization reduces to convex programming w.r.t. decision variables, the implementation of bAUC op-
timization is non-trivial. Specifically, the LP representation (21) for bAUC optimization has &'(m*m™)
constraints. Because of this, as already mentioned, many commercial optimization packages may struggle
to handle bAUC optimization efficiently.

From a practical point of view, if bAUC is to be effectively utilized in experimentation, it is criti-
cal that there exist a highly efficient implementation for bAUC calculation and optimization. Software
should take into account the special structure of the optimization problem. Portfolio Safeguard (PSG) is
one such software, having specialized routines for Partial Moment and bPOE minimization. The Partial
Moment and bPOE function, as well as many other stochastic functions, are precoded allowing the user to
include them in analytic format in optimization problem statements. Because of this precoding, PSG can
efficiently invoke specially developed algorithms for these analytic expressions. For the interested reader,
a PSG case study using the precoded partial moment function can be found online.!> This case study
provides data sets and PSG codes for MATLAB, R, and Run-File (text) environments.? PSG is free for
academic users (data and source codes can be downloaded from the website containing the case study).

The code can handle large sample sizes that would typically cause memory issues with other com-
mercially available solvers. For example, Problem 1 in the case study minimizes the partial moment with
m™ =3,990, m~ = 2,788 in 0.13 second on a 3.14GHz PC. This problem is equivalent to a bPOE min-
imization problem with m*™m~ = 11,124,120 scenarios. In Table 1, we include additional runtimes for
larger versions of this case study. We report the average and standard deviation, over ten trials, of the time
needed to solve problem statement (19) and calculate (22) at the optimal solution for two data sets. The
first data set is purely artificial, composed by generating m™ vectors of dimension 10 with components
uniformly distributed on the interval [—.25,.75] and m~ vectors of dimension 10 with components uni-
formly distributed on the interval [0, 1]. We chose this intersection of intervals so that bAUC calculation
and optimization would not be trivial with bAUC= 1. The second data set is generated from the Iono-
sphere data set from [1]. The original data set is composed of vectors with dimension 34 and m™ = 126
and m~ = 225. We then artificially increase the sample size of the data set by adding new samples which
are perturbed versions of the original samples. If X = [X N ¢ (”)] is an original n-dimensional sample
point, its perturbed version X, will have features X,<,’> =X +8;(2U — 1) where U is a random num-
ber from uniform distribution % (0, 1) and S; is the standard deviation of the i"’* feature across the entire
original data set.

" www.AORDA .com
12 http://www.ise.ufl.edu/uryasev/research/testproblems/advanced-statistics/case-study-bAUC-maximization/
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mT m- | Avg Time to Solve (20) [ Avg Time to Calculate (22) |
Artificial Data

10,000 10,000 5794 £ .0197 seconds .5348 £ .0158 seconds
100,000 100,000 1.667 + .0515 seconds .8637 4 .0118 seconds
1,000,000 1,000,000 | 13.5325 + .8267 seconds 4.6658 £ .1313 seconds
Perturbed Ionosphere Data

126 225 .2631 £ .1092 seconds .1636 £ .0225 seconds

1,260 2,250 2861 =£ .0275 seconds .1639 £ .0017 seconds

12,600 22,500 1.768 + .2759 seconds .3596 £ .0114 seconds
126,000 225,000 25.6364 4+ 3.5174 seconds | 3.9105 + .2751 seconds

Table 1: Size of data sets and time needed to solve problem statement (20) and calculate (22) using Portfolio Safeguard by
AORDA.com.
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Fig. 4: Solid line corresponds to logistic regression with Fig. 5: Histogram of scores provided by classifiers. Upper
AUC=.962 and bAUC=.844, dashed line is SVM with chart is SVM scores. Lower chart is logistic regression log
AUC=.961 and bAUC=.810. odds.

5 Empirical Examples
5.1 bAUC and bROC Curves

Here, much like the theoretical example provided in Section 4.2, we show that bAUC can reveal classifier
properties which are not reflected by AUC but with a real data set and classifiers. We also show that
while the ROC curves may be almost identical, the bROC curves can be different, offering additionally
discriminatory insights to supplement the summary insight of the bAUC metric. Additional examples
illustrating more cases can be found in the extended version of this paper.'3

For the experiment, we compared two classifiers (SVM and logistic regression'#) trained on the Page-
Blocks dataset from the UCI repository. Figure 4 shows the ROC and bROC curves for these classifiers as
well as their AUC and bAUC values. First, notice that for these two classifiers, AUC values and ROC
curves are almost identical, providing little discriminatory insight to compare classifiers. Looking at
bAUC values, we see that the logistic regression classifier has larger bAUC. Additionally, we see that
the bROC curves are dramatically different. Looking at the slope of the bROC curves, we can see that
the SVM classifier is quit unstable, with the large slope revealing that the score distribution is highly
concentrated on a small threshold interval. We can demonstrate this fact by looking at the score distribu-

13 http://www.ise.ufl.edu/uryasev/publications/
14 Scores h(X) of logistic regression in this example are the log odds.
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tions i(X) themselves in Figure 5. Clearly, the logistic regression classifier produces a more stable score
distribution with respect to threshold changes, as the SVM has a score distribution that is very sensitive
to changes in decision threshold because of the concentration of scores in a very small range.

5.2 Empirical comparison with similar AUC alternatives

In [40] and [12], two AUC counterparts are proposed that are similar to bAUC in that they consider the
magnitude of scores (X ) and ranking errors &;;(h). [40] proposes the scored AUC (sAUC) while [12]
proposes the probabilistic AUC (pAUC) which are formulated as follows. Note that these are only defined
in the discrete case where we assume that scores have been normalized so that 4(X;) € [0,1],i=1,...,N.

1 mT m~ N B
SAUC(h) = W ;j:z:llh(xi+)>h(xj)(h(xi ) - h(Xj )) + 'SIh(XI-Jr):h(X;)
L) - T )
PAUC(H) = 3 ( e R )

To compare the performance of these different metrics, we performed the following experimental setup.
For each of 13 data sets from the UCI machine learning repository, we split it into 90 percent training
and 10 percent testing. We then trained multiple classifiers!> (Adaboost, Linear SVM, Random For-
est, Quadratic Discriminant Analysis, Naive Bayes, K-Nearest Neighbor, Neural Net) performing 5 fold
cross-validation on the training set for each classifier and then selecting the best classifier w.r.t. each
performance metric (AUC, bAUC, sAUC,and pAUC) in terms of the mean 5-fold out-of-sample perfor-
mance. We then trained the best classifiers on the full training set and measured the performance on the
test set. We repeated this experiment 20 times, using different random splits of the data set. The average
AUC of the classifiers are listed in Table 2. Numbers in bold indicate that the classifier is statistically no
different than the optimal classifier according to a paired t-test at significance level .05. Due to lack of
space, we did not report results for other metrics. However, we found that the bAUC maximizing classi-
fier frequently outperformed the sAUC and pAUC maximizing classifiers in terms of bAUC, Accuracy,
F-Measure, and MCC. Therefore, at least for our particular experimental setup, using bAUC as our model
selection performance metric led to superior performance. Additionally, for this experimental setup, we
find that bAUC acts much more similarly to AUC than sAUC or pAUC. Often, we found that bAUC and
AUC are optimal for the same classifier.

6 Generalized bAUC: Utilizing Non-zero Thresholds

Previously, we considered the definition of bAUC to be one minus the buffered probability of the error
function & (h) exceeding the threshold of z = 0 (i.e definition (2) ). Consider now a more general definition
of bAUC with thresholds z € R.

Definition 3. Generalized bAUC is defined as follows,

bAUC,(h) =1—p.(&(h)) .

15 All classifiers were programmed in Python with scikit-learn. ([25])
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Data Set bAUC | AUC | pAUC | sAUC
german credit (statlog) | .793 794 | 761 .592
spambase 986 985 982 .898
pima 827 826 | .81 .666
yeast 794 795 734 .628
liver disorders 749 75 671 597
wpbc .605 606 | .594 595
ionosphere 973 97 955 .881
wine red4 748 783 .691 .526
wine white4 855 368 761 .614
abalonel9 779 812 |71 511
solarM 792 793 777 .625
page-blocks 99 99 945 .89

Table 2: Mean AUC for classifiers optimal w.r.t. each performance metric over 20 splits. Bold indicates that the model is no worse
than the best model as measured by a paired t-test at significance level .05.

Modified ROC Curve

1.0

P(R(X*)>t—7)

0.0 0.2 0.4 0.6 0.8 1.0
P(h(X )>t)

Fig. 6: A modified ROC plot for a fixed classifier 4. The lower most curve corresponds to bDAUCy(h) while the uppermost curve
corresponds to PAUC,, (h) = AUC(h). The curves in-between correspond to bAUC; () for values of z € (0,z9).

Just as bAUC was shown to correspond to the area under a modified ROC curve, we have that bAUC,
for any z € R corresponds to the area under a curve on the same, modified ROC plot. This generates
a family of ROC curves, in which AUC and bAUC are members. Specifically, we have the following
proposition, the proof of which we omit since it is essentially identical to that of Proposition 3.

Proposition 4. Assume that bPAUC,(h)=1—a=1— w where y* € argminw and v* is
<z
the smallest minimizer (i.e. the left endpoint of the argmin interval). Then,

bAUC,(h) = /P (h(XT)=t—7)dP(h(X")>1) .
t
Notice in Proposition 4, that if we choose zo such that y* = 0, we will have bAUC,,(h) = AUC(h).
Thus, we see that AUC belongs to the family of curves associated with PAUC;, z € R. Showing this on
the ROC plot, we have Figure 9 which displays a family of bAUC; curves.

6.1 Maximizing Generalized bAUC

Given Generalized bAUC, it is not immediately clear how to utilize it. Here, we show that Generalized
bAUC has already been utilized successfully for AUC maximization, albeit not explicitly. Specifically,
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we find that the popular AUC maximizing RankSVM from [4, 15] is equivalent to a special case of direct
maximization of Generalized bAUC. We first provide a formulation for maximizing bAU C, and then show
that the AUC maximizing RankSVM is a special case of this formulation (specifically, for threshold range
z < 0). In this context, we work with 4(X) = w! X and ranking error & (w) = —w! (XT —X").

Consider the problem of finding the vector w € R” which maximizes bAUC,(w). In other words, we
would like to solve the following optimization problem.

, EEw)—v" _ .

B T oy T RS0 @
However, this problem is ill-posed. As was shown in [24], this formulation yields trivial solutions for
thresholds z # 0 due to the positive homogeneity of the error function & (w) (see appendix of [24] for de-
tails). This issue, though, can be alleviated by fixing the scale of the vector w. This can be accomplished
by fixing any general norm on w, effectively minimizing bPOE of the normalized error distribution 5“%) .
Thus, we can consider the following optimization problem which maximizes bAUC, for non-zero thresh-

olds, where || - || is any general norm,

min 7E[€ () =" = min p, <§(W)) .
weRM,y<z =Y weR? lwl] (24)
s.t. [wll=1

Furthermore, using the result from [24] we know that to maximize bAUC,, we can alternatively solve
the following equivalent problem, which is convex for thresholds z < 0,

L (E(w) ,
=2 = E — 1" . 25
min g (300) = minBiE(0) ] +1 es)

The last formula is easy to interpret. Specifically, adapting a result from [24], we have the following
proposition.

Proposition 5. For z € R, assume that

L= = min E[§(w) =2 wl| +1]" = E[§(w") —zw"|| +1]" .

Then for the normalized error, F := & (%) at the optimal point w*:

[

1
ﬁZ(F):l_a*7 C?(x*(F):Z, qa*(F):Z—m
In the next section, after showing that (25) and the RankSVM are equivalent over the parameter range
7 <0, we find that Proposition 5 provides us with a novel interpretation for the optimal objective value
and free parameter of the RankSVM.

6.2 RankSVM Maximizes Generalized bAUC

In [4, 15], the AUC maximizing RankSVM (also called the AUC-SVM) is derived and shown to maxi-
mize AUC better than the traditional max-margin SVM’s proposed by [8]. More recently, [36] similarly
showed that the RankSVM outperforms many variants of traditional SVM’s, as well as a k-nearest neigh-
bor classifier, particularly when class sizes are imbalanced. In addition, building upon the efficient imple-
mentation of [6], they also show that the RankSVM can be scaled to large data sets without a decrease
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in performance by using a rare-class kernel representation. Thus, the RankSVM has shown continued
success in optimizing AUC, backed up by considerable empirical evidence along the way.

Utilizing a result from [24], we can show that RankSVM is equivalent to direct maximization of Gen-
eralized bAUC for thresholds z < 0. This serves to show in a more exact manner that the AUC maximizing
SVM is, in fact, maximizing a lower bound on AUC, specifically Generalized bAUC. This equivalence
also suggests a novel interpretation for the optimal objective value of the RankSVM and the free pa-
rameter. Furthermore, because of this equivalence, the considerable empirical evidence in the literature
confirming that the RankSVM is highly effective for maximizing AUC also confirms that maximizing
bAUC is an efficient heuristic method for maximizing AUC.

The RankSVM is formulated as follows, where A > 0 is typically introduced as a parameter specifying
the tradeoff between ranking error and regularization. Traditionally, the squared L, norm is used, but we
use any general norm.

.o

1 m m

min - Afw]+——— [Eij(w)+1]" . (26)
w mtm ;J;

This is a reformulation of the well known C-SVM of [8], reformulated for AUC maximization. Let ¥; €

{—1,+1},i=1,..,N indicate the class of samples X, .., Xy, let A > 0, and let (w,b) € R**!. The C-SVM

is formulated as follows,

. 1 ¢ T +
min /IIIWII+N;[—Y,-(W Xi+b)+1]". 27)

Relating the C-SVM to bPOE minimization, [24] introduced the EC-SVM formulation, which is identical
to bPOE minimization problem (25) but with error function & (w,b) = —Y (w? X + b). The EC-SVM is
formulated as follows, where z € R.

min  E[~Y(w' X +b) —z|w|+1]T . (28)
w,b
Specifically, the EC-SVM and C-SVM were related through the following proposition which shows
that the traditional soft margin SVM of [8] is equivalent to minimizing bPOE.

Proposition 6. Consider (27) and (28) formulated with the same norm and assume that we have N
equally probable samples (X;,Y;), i = 1,...,N. Then, over the parameter range A >0, z <0, (27) and (28)
achieve the same set of optimal solutions.

Using Proposition 6, we can prove that RankSVM is simply maximizing Generalized bAUC.

Proposition 7. Consider (26) and (25) formulated with the same norm and assume that we have m™m™
equally probable realizations of the random error §;j(w), i = 1,....,m", j=1,..m". Then, over the
parameter range A > 0, z <0, (26) and (25) achieve the same set of optimal solutions.

Proof. Note that (26) is exactly formulation (27) with m™m~ samples (Xl-+ —-X ;), i=1,.m" j=
1,...,m™ all having class Y;; = +1 and with the classifier intercept b = 0. Thus, applying Proposition 6,

we have that (26) and (25) produce the same set of optimal solutions over the parameter range A > 0,
z<0. O

With this equivalence, we can draw a novel interpretation of the free parameter of the RankSVM and
its optimal objective from Property 5. Specifically, we can now interpret the trade off parameter A > 0
as Generalized bAUC threshold (i.e. bPOE threshold). Additionally, we can conclude that one minus the
optimal objective of the RankSVM equals a probability level, specifically Generalized bAUC for some
z. We do not present this formally here, as it follows directly from [24] and the analysis of the dual
formulations of (27) and (28).
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As we will see in the next section, the insight that the RankSVM A parameter can be interpreted as
bPOE threshold has consequences from a theoretical perspective. We provide generalization bounds for
the true AUC and bAUC of RankSVM classifiers and show that these bounds are controlled by empiri-
cal bAUC, sample size, and A. Thus, our bounds are not controlled by a measure of the complexity of
the hypothesis space, which is typical in statistical learning theory, but are controlled instead by bPOE
threshold. In other words, we see that consideration of non-zero bPOE thresholds leads to generalization.

6.3 Rank SVM Generalization Bounds For bAUC

With the new insight that the RankSVM directly maximizes bAUC, we show here that the classifier
produced by the RankSVM generalizes w.r.t. bAUC when trained on a finite sample. Specifically, we
use the stability arguments of [2] to provide generalization bounds on bAUC for optimal solutions of the
RankSVM. This provides theoretical guarantees on the performance of RankSVM classifiers w.r.t. bAUC.
Thus, RankSVM is shown to directly maximize bAUC and generalize w.r.t. this performance metric as
well. It is important to note that these performance guarantees also hold for AUC, since bAUC is a lower
bound on AUC.

These bounds diverge from traditional generalization bounds given in the classification literature in
two ways. First, generalization bounds are typically focused on bounding the true misclassification rate.
This intuitively makes sense. With classification algorithms, like the SVM, often viewed as approximate
methods for minimizing misclassification rate, we would like theoretical guarantees that our classifier
will perform well on unseen samples w.r.t. the misclassification rate performance metric. Having shown
that the RankSVM is directly maximizing bAUC, we instead provide a bound on the true bAUC, showing
that RankSVM classifiers perform well on unseen samples in terms of the bAUC performance metric.

Second, generalization bounds are often composed of a sum of empirical error and an additional
uncertainty term. This uncertainty term is often controlled by the sample size and a measure of the com-
plexity of the hypothesis space from which the classifier was selected, e.g. the VC dimension. Our bAUC
generalization bound is similar in that it is a sum of empirical bAUC and an additional uncertainty term.
However, our uncertainty term is not controlled by a measure of the complexity of the hypothesis space.
It is controlled by sample size and bPOE threshold.

Specifically, assume we have a finite training set $ = STUS™ = {X{",...,.X " }U{X[,...,.X _} and a
training algorithm that produces the scoring function hg. The true bAUC is given by

bAUC(hs) = 1 —minE[ag (hs) + 1]*,

which is unknown since we do not assume to know the true distribution of X. However, given access to a
training set, we can calculate empirical bAUC,

—— 1

bAUC (hs) =1 — min ——— ZZ[agij(hS) +1]*.
- J

l

We show in Proposition 8 that for the scoring function produced by the RankSVM algorithm, the true
bAUC is bounded from below by the sum of empirical bAUC and an uncertainty term. Although this
uncertainty term looks complex, it essentially relies on two parts. First, it relies on the size of the sample
of the minority class, i.e. /it = min{m+,m‘ }., and the overall sample size N = mT 4+m~. Second, it relies
on the RankSVM parameter A. As was discussed in the previous section, this parameter plays the role
of bPOE threshold. Therefore, we see that our generalization bound is not reliant upon a measure of the
complexity of the hypothesis space, but instead bPOE threshold. Thus, this shows that bPOE threshold
plays an important role in the generalization capabilities of the RankSVM algorithm.

For brevity, we avoid a full introduction to the ideas of uniform stability and the associated general-
ization theorems and refer readers to [2]. Thus, we confine most details to the proof. However, we note
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that this bound, like many of those from [2], can be very tight. Also, we note that Proposition 8 consid-
ers the RankSVM, but with squared norm. Although similar bounds hold for RankSVM formulated with
non-squared norm and for formulation (25), we present the RankSVM with squared norm in the main
proposition because the bound expression is much more straight forward.'®

For the proposition, let us denote the support of X, X+, X~ respectively as .2, 2", 2 ~. Addition-
ally, for a norm || - || et || - ||* denote the dual norm. We also assume that the squared norm is differentiable
and r-strongly convex w.r.t. itself.!” For example, note that the squared L, norm is differentiable and
strongly convex w.r.t. itself with r = 2.

Proposition 8. Assume that the squared norm || -||? is differentiable and r-strongly convex w.r.t. itself and
that sup,+ c 5+ ||xT||* <RT and sup, . o ||x™ ||* <R, meaning that the support of X*, X~ is contained
in a dual-norm ball of radius R™,R™ respectively. Assume we solve the RankSVM with squared norm on
training set S = STUS™ = {X{", ... X" YU{X[,...,X _}, yielding

1
mtm—

ws € argmin
w

Y [&i(w)+1]" + A w|?.
i

Let i =min{m",m~}, N=m"* +m~. For any a > 0, with probability 1 — p,

B Y ladij(ws) +1]F

mtm—

(2R +R*)? | (4Na(R"R*) || a(R”+RY) [Ing
rAM rAm NS 2N

In particular, if a € argmin ﬁ Y Y j[a&ij(ws) + 1], with probability 1 —p,
a>0

bAUC(ws) > 1

1

— 2a(R~ +R*)> [4Na(R~ +R*)? a(R~+R") In 5

bA > bA — 1 _P

UC(ws) = bAUC(ws) o oy +1+ 7 SN
Proof. See Appendix B. O

Although we do not present it here, considering only the case of linear functions w € R”, this result
can easily be generalized to consider functions in a Reproducing Kernel Hilbert Space such that the kernel
function K-, -) is bounded with supy. - K(X,X) <R, as is done in [2].

7 Conclusion

AUC is a useful and popular metric for measuring the ranking quality of scores given by a classifier. As
a metric defined with POE, though, it does not consider the magnitude of ranking errors and is numeri-
cally difficult to optimize. We utilize bPOE to create an informative counterpart metric called bAUC. We
show that bAUC is indeed a counterpart. It is a readily optimizable, tight, concave lower bound of AUC
that can also be viewed as the area under a modified ROC curve. We also show that bAUC is a more

16 Intuitively, similar bounds will hold for any equivalent formulation, but with different constants.
17" A differentiable function f is r-strongly convex w.r.t. some norm || - | if for any wy,w> we have that % [[w; — w2 < f(wy) —

Fw2) = (Vf(w2), w1 —w2).
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appealing counterpart, theoretically and empirically, than sAUC or pAUC when the magnitude of ranking
errors yields important discriminatory information. Additionally, the bROC curve can provide additional
discriminatory insights when comparing classifiers, particularly when ROC curves are very similar and
cross multiple times.

To facilitate the creation of bAUC, we focused our attention on deriving a novel formula for calcu-
lating bPOE, the inverse of the superquantile (CVaR). We show that this formula is significant, allowing
certain bPOE minimization problems to be reduced to convex and linear programming. Applying this to
bAUC, we show that this reduction applies to bAUC allowing for efficient maximization of the metric.

By considering non-zero bPOE thresholds in the definition of bAUC, we also introduce Generalized
bAUC. We show that Generalized bAUC generates a family of metrics, in which AUC and bAUC belong.
Furthermore, we show that Generalized bAUC has already found its way into the AUC maximization
literature. Specifically, we show that the popular AUC maximizing RankSVM is equivalent to maximiza-
tion of Generalized bAUC, providing also theoretical performance guarantees for bAUC for classifiers
produced by this algorithm. Thus, bAUC has already, in some sense, been used as a metric counterpart to
AUC that is much simpler to optimize.

In general, we see that defining metrics with POE is highly intuitive, but produces metrics that are
numerically difficult to optimize. Utilizing bPOE, one can create a complimentary counterpart to the
intuitive POE metric that reveals information about the magnitude of errors while proving to be efficiently
optimizable with convex or linear programming.
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8 Appendix A

Here, we discuss the slight differences between Upper and Lower bPOE. First, Lower bPOE is defined as
follows.

Definition 4. Let X denote a real valued random variable and z € R a fixed threshold parameter. bPOE
of random variable X at threshold z equals

0, ifz>supX,
pr(X) = {1-alGa(X) =2}, fEX]<z<supX,
1, otherwise.

Upper bPOE is defined as follows.
Definition 5. Upper bPOE of random variable X at threshold z equals

U max{l — a|§o(X) >z}, ifz<supX,
P (X) = ;
0, otherwise.

Upper and Lower bPOE do not differ dramatically. This is shown by the following proposition.
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Proposition 9.

Uy ) PEX), ifz# supX ,
P X) = {P(XZSUPX)7 if z=supX.

Proof. We prove four cases.

Case 1: Assume z > supX. By Definition 1, pX(X) = 0. By Definition 2, p¥ (X) = 0.

Case 2: Assume E[X] < z < supX. By Definition 1, p£(X) = {1 — a|gu(X) = z}. By Definition 2,
Y (X) = max{1 — a|Ga(X) > z}. Since §u(X) is a strictly increasing function of & on & € [0,1 — P(X =
supX)], Go(X) = z has a unique solution. Therefore, we have that p¥ (X) = max{1 — &|ga(X) >z} =
{1 - al7a(X) = 2} = pH(X).

Case 3: Assume z < E[X], z # supX. By Definition 1, pL(X) = 1. Since go(X) = E[X], max{l —
®|Ge(X) >z} = 1 implying that ¥ (X) = 1.

Case 4: Assume z = sup X. Following from the fact that §(;_p(x—supx)) (X) = supX, we have that Y (X)=
max{1l — a|Go(X) >z} = P(X = supX). O

Thus, one will notice that Upper and Lower bPOE are equivalent when z # supX. The difference
between the two definitions arises when threshold z = supX. In this case, we have that p%(X) = 0 while
pY(X) =P(X =supX). Thus, for a threshold z € (E[X],supX), both Upper and Lower bPOE of X at z can
be interpreted as one minus the probability level at which the superquantile equals z. Roughly speaking,
Upper bPOE can be compared with P(X > z) while Lower bPOE can be compared with P(X > z).

The importance of using Upper bPOE instead of Lower bPOE in the definition of bAUC should be
noted here. To illustrate, consider a trivial classifier with w = 0. Clearly this is not a very good classifier.
Using Upper bPOE, we find that 1 — 5§ (& (w)) = 1 —P(&(w) = sup& (w)) = 1 — 1 = 0. Using this number
as our ranking ability performance metric intuitively makes sense, i.e. assigning the trivial classifier the
lowest possible bAUC, reflecting its poor ranking ability. What if we use Lower bPOE instead? Using
Lower bPOE, we find that 1 — p5(&(w)) = 1 —0 = 1. Using this as our measure of ranking ability does
not make much sense. Thus, we find that Upper bPOE treats losses at the supremum in a manner more
fitting to our application, i.e. measuring the ranking ability of a classifier.

9 Appendix B: Proof of Proposition 8
Let V(w,X~,X",a) = [—aw’ (X~ —X*)+1]*. First, note that,
bAUC(ws) = 1 fm>i{)1E[faw£(X+ -X7)+1*
az
=1-minE[V(ws,X ,XT,a)]
a>0
>1-E[V(ws,X ,X",a)],Va>0.

Given any a > 0, we can upper bound E[V (ws,X ~,X ", a)] by using stability arguments of [2].

The first step is to prove that the RankSVM is uniformly stable, as defined in [2], w.r.t. loss function
V. The second step is to prove that for any training set S and sample pair (x~,x7) € 2"~ x 27, that
V(ws,x™,x*,a) is bounded. We can then apply Theorem 12 from [2].

To prove uniform stability, we show that there exists 8 such that given any training set S = ST S,

sup |[V(ws, X ,X",a) —V(Wsk,Xi,X+,a)| <0
X-x+

where

wg € argmin ZZ[—WT(Xi+—Xf)+1}++l||w‘|2a
w

4+ —
mmij



26 Matthew Norton, Stan Uryasev

and

Y Y G =X )+ 10T A w7,

wge € argmin
w i j#k

m+

or

Wg € argmin - Y Y W (X =X) 1T Al
wo T

In the context of typical uniform stability proofs, the set S¥ is meant to denote the training set S with
the k' point removed. In our context, the removed point will be removed from S~, hence the sum over
indices j # k, or it will be removed from ST, hence the sum over indices i # k. We first prove the case
where the point has been removed from S™. As we will see, the main argument of the proof is symmetric
and thus the proof for the case where the point is removed from S* follows immediately from the proof
of the prior case.

Now, note that for any wy,w, € R", and sample pair (x~,x") € 2~ x 2", we have that

|V(w1,x_,x+,a) —V(wz,x_,x+,a)| = H—awlT(x+ —x )1 = [—awl (xT —x7) + 1]+|
< !—awlT(x+ —x )+1- (—awg(x+ —x )+ 1)’
:a’(wl —wz)T(xf—x+)|

<a sup {(wlfwz)Tx_|+a sup |(W1*W2)Tx+|
x e~ xte2+

<a sup |(w1 —wz)Tx‘ +a sup |(w1 —wz)Tx|
[lx]]* <R~ xeR" llx|[* <R+ xeR"

= aR™ ||wy —wa || +aR" ||w; —wa|
=a(R™ +R")|lwi —wal| .

We show now that ||ws —wg]|| < (Rr;litlf). Let dy.dy denote the Bregman divergence and generalized
Bregman divergence of a convex function f with subderivatives at any w denoted as Vf(w) € d f(w). (See
Appendix C for definition and properties of Bregman divergence) Let g(w) = [|w||?, hs(w) = —L— ¥, ¥ ;[-wT (X —
X7) 4+ 17, and hg(w) = 2= ¥ X a[—w" (X;” — X;7) + 1] First, since g(w) is assumed to be r-

strongly convex w.r.t norm || - ||, by definition we have  [[ws — wg[|? < d,(ws, wg ). Next, we have that

Arllws —wge]|* < A (dg(wgr, ws) +dg(ws, wt)

= d?tg(
(following from (31)) = dj (

Wk, ws) +dy o (Ws, W)
wee, VAg(ws)) +dyg(ws, VAg (W) -

Since generalized divergence is linear and non-negative (see Appendix C and (32)), we have for any
V(hs(ws) +Ag(ws)) € d(hs(ws) +Ag(ws)) and any V(hg (wg) +2Ag(wgk)) € I (hge(wgk) +Ag(wgk ),
that

d_lg (WSk ’ Vlg(ws)) + d_lg<W57 Vx'g(WSk)) < d(h5+lg) (WSk ) V(hS(WS) + z’g(WS)))
g 2g) Ws, V(hg (W) +Ag(wg))) -
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Now, since 0 € d(hs(ws) +Ag(ws)) and 0 € d (hg (wg ) +Ag(we)), we have

(
dpg(Wk, VAg(Ws)) +d g (ws, VAg(Wgk)) < dijg2.0)(Wst;0) + (g +2g) (Ws0)
(following from (33)) = hs(wg) + Ag(wg ) — hs(ws) — Ag(ws)
+hge(ws) + Ag(ws) — hg (wgk) — Ag(wgk)
hS(Wsk) — hs(ws) + hg (ws) — hge (wgr )

— m+m ():V W, X, 1)V(wS,X,.+,X,;,1)>
o MR AR wge — w|
- mtm~ '

The last inequality follows from the prior result bounding the absolute difference in V for any wy, w,. This

then implies that ||ws —w|*> < ||ws — WSkHM which further implies that ||ws — wg || < %Ii)

Together with the previous result bounding the absolute difference in V, we have that for any sample pair
—LRH)2
(xxN) e - x 2, |[V(ws,x,xt,a) = V(wg,x™ ,xT,a)| < ||lws—wg|la(R™+R") < %.
Recall that, up until now, we let S signify that we removed the & point from the set S~. Notice now
that if we had instead started with

Wk € argmln
w

2 Y (G = XD) 1T Al

i#k j

where S* signified that we removed the k" point from the set S*, we could repeat the same argu-
ments to show that for any sample pair (x~,x") € 2~ x 2", [V(ws,x ,x",a) = V(wg,x ,xt,a)| <
- 2
lws —wgl|la(R™+R") < %. Therefore, combining the two arguments, we know that the learning
- 2
algorithm is uniformly 8-stable w.r.t. loss function V with 6 = %.
To apply Theorem 12 of [2], which gives us the final generalization bounds, we need to show that for

any training set S and any sample pair (x~,x"), V(ws,x",x",a) is bounded. To see this, first notice that

Allws||* < hs(ws) +Allws||* < hs(0) +A[0]|* =

Ta)=1.

Second, combining this with the first result of the proof yields,

V(ws, X7, X[ a) < |V(ws, X, X", a) — V(o,inX,.*,a)’ +V(0,X;,X;",a)
< |ws—0[la(R™+R*)+1
- a(R~+R")
T V2
Thus, applying Theorem 12 of [2], for any a > O yields the first generalization bound. The second
generalization bound follows from the fact that if

ZZ —aw’ (X — X)) +1]"

+1.

a € argmin
a>0 m m-

then

m‘(w) ZZ —aw’ (X" — X)) +1]*

m*m -
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10 Appendix C: Bregman Divergence Background

For a convex function f : R" — R, let d f(w) denote the set of subderivatives Vf(w) € d f(w) at a point
w € R”". For a differentiable, convex f the Bregman Divergence at wi,wy € R” is defined as

dr(wi,wa) = f(wi) = f(w2) = (Vf(w2), w1 —w2) . 29)
Since f is differentiable, V f(w) is the unique subderivative, and thus the divergence is well defined. If f
is convex, but not differentiable, V f(w) may not be unique. In this case, however, following Appendix C

of [2], we can define a generalized Bregman Divergence. Letting the function f*(a) = sup,,(w,a) — f(w)
denote the conjugate of f, we define the generalized Bregman Divergence at wi,a € R" as,

dr(wi,a) = f(w1)+ f*(a) = (wi,a) . (30)

As it relates to the normal Bregman Divergence, it is easy to check that for convex differentiable f,
dp(wi,wp) =ds(w1,Vf(w2)) . (€1Y)

which follows from the property that

acdf(w) < f'(a) ={a,w)—f(w).

As for its other properties, first note that the generalized divergence is non-negative. Second, notice that
we have linearity, such that if f = g+ h, for convex functions g,/, and we choose subderivatives of f,g,h
satisfying Vf(wy) = Vg(wz) + Vh(wy), then

dp(w1,Vf(w2)) = dg(w1,Vg(w2)) +dp(wi, Vh(w2) . (32)

To see this, we simply need to expand the right hand side in the following manner, where we use the fact
thata € df(w) <= f*(a) = (a,w) — f(w) in the third and fifth equality.

dr(w1,V f(w2)) wi,V(g+h)(wa))

(g+h)
g+h)(wi)+ (g +h)"(V(g+h)(w2)) — (w1, V(g + 1) (w2))

(
= [(g+h)(w1) — (w1, V(g +h)(w2))] + (w2, V(g +h)(w2)) — (g +h)(w2)
= [(g+1)(w1) — (w1, V(g + 1) (w2))] + ((w2, Vg(w2)) — g(w2)) + ((w2, VA(w2)) — h(w2))
= [(g+n)(w1) — (w1, V(g +h)(w2))] + 8" (Vg(w2)) +h* (Vh(w2))
= (g(w

(w1) +8"(Vg(w2)) — (w1, Vg(wa))) + (A(w1) + 1" (Vi(w2)) — (w1, Vh(w2)))
dg(w1,Vg(w2)) +dp(wi,Vh(wy) .

Finally, assume that wy is a minimizer of f, meaning that 0 € af(w f). Then, we have for any wy,

dp(w1,0) = f(w1) — f(wy) . (33)
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