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ABSTRACT: Many systems, or components of systems, often have associated with them a critical
safety threshold. If events then occur that have magnitude larger than such a threshold, such as a
weather event or physical stress on a component, critical failures become likely and/or overall system
integrity can become critically compromised. Therefore, regulations and risk assessments are often
formulated mathematically in terms of Probability of Exceedance (POE). This characteristic, however,
can hide important information about the frequency, magnitude, and overall risk of exceedance events.
This includes the magnitude of events that do exceed the threshold. Additionally, the frequency and
magnitude of near-exceedance events, just below the threshold, are ignored entirely. We overview a new
probabilistic characterization of exceedance risk call Buffered Probability of Exceedance (bPOE), also
reviewing a closely related concept called the superquantile. We show that bPOE simultaneously assess
both the frequency and magnitude of both exceedance events and near-exceedance events. After
introducing bPOE and superquantiles, we show how it can be viewed as superior to POE as a measure of
exceedance risk. We then present a simple parametric distribution fitting procedure that utilizes bPOE
and the superquantile, two characteristics that we see are advantageous to consider when estimation of
exceedance risk and tail density are the focus of the fitting procedure.

1. MEASURING RISK

When faced with a random outcome, represented
here by a real valued random variable X , it is of-
ten critical in engineering applications to properly
characterize its inherent uncertainty or risk. Fre-
quently, in this context, engineers will have some
idea about what might be considered a large out-
come or realization of X . For example, one might
say that realizations with magnitude larger than
some threshold z∈R would be considered large. In
this case, it would be desirable to characterize the
uncertainty or riskiness of X relative to the thresh-
old z.

An intuitive and common characterization of un-
certainty that considers such a threshold is Prob-
ability of Exceedance (POE), pz(X) = P(X > z).
Here, one characterizes the riskiness of X by how
frequently its value exceeds z. However, even

though this is a simple and intuitive concept, POE
has some limitations.

First, POE does not consider the magnitude of
exceedance events or near-exceedance events. For
example, suppose you calculate that P(X > z) =
.05. This tells you how frequently X turns out to
be large, but it does not tell you how large X might
be when it does exceed z. This can be critical in-
formation, such as when X represents a financial
loss or structural stressor. In this context, a single
stressor, if large enough, could be catastrophic. Ad-
ditionally, when X nearly exceeds z, how close to z
does it come and how frequently does it come so
close to z from below? This is also important in-
formation that is not considered by POE. Assume,
again, that X represents an unknown financial loss
and that P(X > z) = .05. Then, it is important to
know if 95% of the losses equal z− $1, i.e. are
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near-exceedance events, or if 5% of the losses equal
z−$100 with the remaining 90% being very far be-
low z.

Second, POE is often discontinuous w.r.t. the
threshold. For example, assume that X is discretely
distributed with finite potential outcomes and sup-
pose you would like to know how P(X > z) varies
over z ∈ [zl,zh]. One will then discover that P(X >
z) is discontinuous w.r.t. the threshold and, further-
more, sensitivity analysis will be difficult as small
changes in threshold can lead to large jumps in
probability. Thus, the difference P(X > zl)−P(X >
zh) may be very large, even if zh− zl is very small.

Third, when working with optimization of tail
probabilities, one frequently works with constraints
or objectives involving POE, or its associated quan-
tile qα(X) = min{z|P(X ≤ z) ≥ α}, where α ∈
[0,1] is a probability level. The quantile is a pop-
ular measure of tail probabilities in financial engi-
neering, called within this field Value-at-Risk by its
interpretation as a measure of tail risk. The quan-
tile and POE, though, when included in optimiza-
tion problems via constraints or objectives, can of-
ten be difficult to treat with continuous (linear or
non-linear) optimization techniques.

This paper overviews a recently introduced con-
cept called Buffered Probability of Exceedance
(bPOE), a counterpart of POE that does not suf-
fer from these difficulties. Like POE, we have
that bPOE measures the frequency with which out-
comes are large w.r.t. some threshold z. Unlike
POE, though, it is continuous w.r.t. the threshold,
considers the magnitude of events beyond or near
to the threshold, and can be integrated into opti-
mization frameworks efficiently, often with convex,
sometime even linear programming.

1.1. bPOE and Superquantiles
As mentioned above, POE suffers from many dif-
ficulties. The quantile, being its inverse, suffers
from identical issues. A significant advancement
was made in Rockafellar and Uryasev (2000, 2002)
in the development of a replacement for the quantile
called the superquantile, also referred to as Condi-
tional Value-at-Risk (CVaR) in the financial engi-
neering literature. The superquantile is a measure
of uncertainty similar to the quantile, but with su-

perior mathematical properties. Formally, the su-
perquantile (CVaR) for a continuously distributed
X is defined as,

q̄α(X) = E [X |X > qα(X)] =
1

1−α

∫ 1

α

qp(X)d p.

(1)

Similar to qα(X), the superquantile can be used
to assess the tail of the distribution. The superquan-
tile, though, does not suffer from the difficulties
outlined above like POE and the quantile. First, the
superquantile accounts for the magnitude of events
in the tail, which can be seen by noticing that it is
simply a form of tail expectation. Therefore, in sit-
uations where a distribution may have a heavy tail,
the superquantile accounts for magnitudes of low-
probability large-loss tail events while the quantile
does not account for this information. Second, it is
continuous w.r.t. the parameter α . Third, it is far
easier to handle in optimization contexts.

The notion of buffered probability was originally
introduced by Rockafellar and Royset (2010) in the
context of the design and optimization of struc-
tures as the Buffered Probability of Failure (bPOF).
Working to extend this concept, bPOE was devel-
oped as the inverse of the superquantile by Mafusa-
lov and Uryasev (2018) in the same way that POE is
the inverse of the quantile. Specifically, for continu-
ously distributed X , bPOE at threshold z is defined
in the following way, where supX denotes the es-
sential supremum of random variable X and thresh-
old z ∈ [E[X ],supX ].

p̄z(X) = {1−α|q̄α(X) = z} . (2)

In words, bPOE calculates one minus the proba-
bility level at which the superquantile, the tail ex-
pectation, equals the threshold z. Roughly speak-
ing, bPOE calculates the proportion of worst-case
outcomes which average to z.1Figure 1 presents an
illustration of bPOE for a Lognormal distributed

1Empirical p̄z and q̄α can be easily calculated by sort-
ing data and calculating tail averages. When qα or z lie in-
between sample “atoms”, more care is needed to get exact re-
sults which include a weighted average of the left and right
atom in the overall tail average. (see e.g. Mafusalov and
Uryasev (2018) or Pavlikov and Uryasev (2014) for details.)
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Figure 1: Shown is the Probability Density Function
(PDF) of X ∼ Lognormal(σ = 1,µ = 0). Given
threshold z ∈ R, POE equals P(X > z) the cumula-
tive density in red. For the same threshold z, bPOE
equals p̄z(X) the combined cumulative density in red
and blue. By definition, the expectation of the worst-
case 1−α = p̄z(X) outcomes equals z = q̄α(X). These
worst-case outcomes are those that are larger than the
quantile qα(X).

random variable X . We note that there exist two
slightly different variants of bPOE, called Upper
and Lower bPOE which are identical for contin-
uous random variables. For the interested reader,
details regarding the difference between Upper and
Lower bPOE can be found in Mafusalov and Urya-
sev (2018).

Similar to the superquantile, bPOE is a more ro-
bust measure of tail risk, as it considers not only
the probability that events/losses will exceed the
threshold z, but also the magnitude of these poten-
tial events. In addition, it also considers the mag-
nitude of the largest events/losses that are less than,
z. Thus, it is more robust to slight variations in z,
particularly if there is a lot of probability mass right
below or above z.

Also, much like the superquantile, bPOE can
be represented as the unique minimum of a one-
dimensional convex optimization problem with the
formulas given as follows, where [·]+ = max{·,0}.

p̄z(X) = min
a≥0

E[a(X− z)+1]+, (3)

q̄α(X) = min
γ

γ +
E[X− γ]+

1−α
. (4)

Note that these formulas are valid for general real
valued random variables, not only continuously dis-
tributed random variables. Although we do not ad-
dress it in this paper, these formulas allow for easy
optimization of bPOE or the superquantile. We re-
fer readers to Norton and Uryasev (2016); Mafusa-
lov and Uryasev (2018); Rockafellar and Royset
(2010) for optimization examples.

The bPOE concept is also closely related to the
concept of a superdistribution function F̄(z), intro-
duced by Rockafellar and Royset (2014). For the
CDF, we have that POE equals P(X > z) = 1−F(z)
and we have the inverse CDF given by F−1(α) =
qα(X). The superdistribution function F̄(z) is mo-
tivated by the inverse relation F̄−1(α) = q̄α(X).
Thus, bPOE equals 1− F̄(z). The superdistribu-
tion function of a random variable X can also be
understood as the CDF of an auxiliary random vari-
able X̄ = q̄u(X) where u ∼ U(0,1) is a uniformly
distributed random variable. In this case, F̄X(z) =
FX̄(z) where the subscript indicates that it is the dis-
tribution function associated with a particular ran-
dom variable.

2. MEASURING RISK OF EXCEEDANCE

EVENTS

Risk in engineering applications is often measured
with POE. For example, the risk of monetary losses
associated with seismic activity in an urban area
is commonly characterized by the Complemen-
tary CDF (CCDF), or the probability that mon-
etary losses will exceed various threshold levels.
For example, Mahsuli (2012) utilize simulated seis-
mic scenarios to estimate the probability that losses
from seismic activity over time will exceed various
threshold levels. Assessing the risk of a tropical
storm is another example given by Davis and Urya-
sev (2016), where insurers and disaster relief or-
ganizations alike are concerned with the probabil-
ity that tropical storm damage will exceed various
thresholds when making landfall.

The accuracy and robustness of these measure-
ments is of critical importance, particularly given
the downstream effects they have upon decision

3



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

making and planning processes. For example, con-
sideration of such statistics is obviously important
for organizations like the Federal Emergency Man-
agement Agency (FEMA). Projecting budgetary
needs given a seismic or tropical storm event in-
volves consideration of the likelihood that damages
will exceed particular limits. Under-estimation of
such requirements can lead to slow and inadequate
relief efforts, furthering the long-term effects of the
event. Hurricane Maria of 2017 presents an exam-
ple of this, with the 2017 Hurricane Season FEMA
After-Action Report citing budgetary and resource
shortfalls as a hinderance to a more effective re-
sponse. Donald Trump himself said that the dis-
aster “threw our budget a little out of whack.” (see
Robles (2018))

Underestimation of the magnitude of such events
can potentially be traced to two causes: 1) Event
magnitudes which follow a heavy-tailed distribu-
tion. 2) Inadequate characterization of the risk as-
sociated with the frequency and magnitude of such
tail-events. The heavy tailed nature of loss/damage
distributions has been observed in a multitude of
engineering applications. For example, in seismic
risk assessment of structures, the probability of ex-
ceeding limiting values of structural demands, dam-
age states, or losses is often modeled with heavy-
tailed log-normal distributions or, when applied to
modeling the tail, distributions from Extreme Value
Theory (EVT) like the Weibull are used. See e.g.,
Qin et al. (2015). The focus, however, on measur-
ing POE results in assessment of exceedance risk
which can be misleading, particularly since it ig-
nores the magnitude of events beyond the threshold
and only counts their frequency.

The new characteristic called bPOE serves to si-
multaneously characterize the frequency and mag-
nitude of events exceeding a specified threshold.
This leads to risk-averse assessments of exceedance
risk that can be modeled as a risk-averse variant of
the CCDF.

To illustrate, we present an example from Mah-
suli (2012) which simulates potential seismic losses
over a 50 year time span, in billion $CAD, for
the Vancouver metropolitan area. Specifically, both
the seismic activity emanating from the Cascade

Mountains crustal source over a 50 year timespan
and the associated accumulated losses are simu-
lated 100,000 times. As emphasized by Mahsuli
(2012), a common method to assess seismic risk is
to use the simulated data to estimate the probability
that losses will exceed certain large-loss thresholds.

Figure 2 shows the 10% tail of the empirical
POE curve of the simulated losses. The tail is in-
deed long, but the cumulative density which shrinks
rapidly to zero could lead one to believe that the
probability of exceedance for large thresholds z is
insignificant. For example, consider the threshold
z = $20 billion. The probability that losses L ex-
ceed z is P(L > z) = .038.

Using this as an indication of the risk of seismic
losses, however, is highly misleading. While the
density in the tail beyond z = $20 billion is small,
the values within this tail are dramatically larger
than $20 billion. For example, q.99(L) = $72.3 bil-
lion, q.995(L) = $109 billion, and q1(L) = $373 bil-
lion. These events are so severe, their occurrence
would lead to dramatic consequences for the Van-
couver metropolitan area and its 50 year develop-
ment if not properly accounted for and addressed
ahead of time during risk assessment.

Utilizing bPOE, (2), as our assessment metric,
however, we see a dramatic difference emerge in
the perceived risk of exceedance events. Figure 2
displays the empirical bPOE curve2 of the same
simulated loss data, along with a curve representing
the difference between bPOE and POE at different
threshold levels. First, consider again the thresh-
old z = $20 billion. Comparing bPOE and POE,
we have that P(L > z) = .038 while bPOE yields
p̄z(L) = .152. bPOE is almost 4 times larger than
POE, reflecting the risk of extremely large events in
the tail exceeding z.

3. PARAMETRIC DISTRIBUTION FITTING

These concepts can not only be used to measure the
risk of exceedance events, but can also be plugged
into standard statistical estimation procedures as re-
placements for POE (or the CDF) and the quan-
tile when heavy tails are a factor and exceedance
risk is of central importance. In particular, we can

2solving (2) for many values of z.
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Figure 2: Shown is the empirical Probability of Ex-
ceedance (POE) and Buffered Probability of Ex-
ceedance (bPOE) for high loss thresholds. Damage
data from Mahsuli (2012).

consider parametric density estimation, which is
often used to fit heavy tailed data to some para-
metric distribution allowing for further analysis of
exceedance risk and its sensitivity the choice to
threshold. For example, Qin et al. (2015) use a fu-
sion technique to fit parametric models of the de-
mand placed upon a structure by seismic activity.
In this context, critical emphasis is placed upon ac-
curate estimation of exceedance risk, specifically
the probability that demands will exceed limiting
values that represent danger zones for structural in-
tegrity. As seen in Qin et al. (2015), it is common to
use heavy tailed distributions like the lognormal or
weibull to parametrically fit a distribution to data.
In particular, common tools include maximum like-
lihood (ML), method of moments (MM), and the
Matching of Quantile’s (MOQ) procedure which is
much like MM but where parametric and empirical
quantiles at various alpha levels α1, ...,αk are used
instead of the typical parametric and empirical mo-
ments (see e.g., Sgouropoulos et al. (2015); Karian
and Dudewicz (1999)). An important note to keep
in mind is that MOQ is effectively equivalent to an
identical procedure but where parametric POE (i.e.
the CCDF) is fit to match empirical POE at various
threshold levels z1, ...,zk. This can be easily real-
ized by noting the fact that qα(X) = x ⇐⇒ P(X >
x) = 1−α .

The ML and MM procedures, however, do not
place direct emphasis on fitting the tail and can thus
be poor choices when accurate and risk-averse esti-
mation of exceedance probabilities is of the utmost
important. Furthermore, while the MOQ procedure
does put direct focus on making sure that paramet-
ric and empirical exceedance probabilities match, it
is nevertheless considering POE as its primary risk
assessment, which as already emphasized, ignores
important aspects of the magnitude and frequency
of exceedance events.

This, then, provides great opportunity to utilize
bPOE and the related superquantile as criteria for
distribution fitting. As we will show, as long as
formulas for bPOE or the superquantile are avail-
able in closed-form3 for the considered parametric
family, parametric procedures can be easily adapted
to find parametric distributions with best match-
ing bPOE or, equivalently, superquantiles. We il-
lustrate this idea by using a simple variation of
MOQ, which we call the Method of Superquantile’s
(MOS), where superquantile’s at varying levels of
α take the place of moments. Note that, just as with
MOQ, the MOS procedure is equivalent to fitting a
bPOE criteria, which can be understood similarly
by noting that q̄α(X) = z ⇐⇒ p̄z(X) = 1−α .

Our numerical example utilizes a heavy tailed
Weibull to fit the loss data from Section 2, since
it is particularly well-suited for asymmetric heavy-
tailed data. In addition, we also introduce a new
method for visually assessing goodness-of-fit of
this method. Instead of utilizing a Q-Q plot, com-
paring empirical quantiles against predicted quan-
tiles, we use an SQ-SQ plot, which compares the
empirical superquantiles with superquantiles pre-
dicted by our parametric distribution. Overall, we
find that by utilizing superquantiles, or equivalently
bPOE, for distribution fitting, we arrive at a para-
metric distribution that provides a more accurate
and conservative estimate of tail behavior for fur-
ther assessment of exceedance risk.

3.1. Method of Superquantile’s
The MM is a well known tool for estimating the pa-
rameters of a distribution when moments are avail-

3Formulas for multiple distributions can be found in Nor-
ton et al. (2018) .
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able in parametric form and desired moments are
either assumed to be known or are measured from
empirical observations. It looks for the distribution
fΘ(x), parameterized by Θ, with moments equal
to some known moments or, if moments are un-
known, empirical moments. With n moments used,
the problem reduces to solving a set of n equations
w.r.t. the set of parameters Θ of the distribution
family.

This method, though, can be generalized where
moments are replaced by other distributional char-
acteristics, such as the superquantile and quantile.
We utilize superquantile’s in this context. This
method provides flexibility through the choices of
different α , allowing the user to focus the fitting
procedure on particular portions of the distribu-
tion. This flexibility is advantageous compared
to other methods such as MM or ML since these
fitting methods treat each portion of the distribu-
tion equally. When fitting the tail is important, for
example, and there are many samples around the
mean with few samples in the tail, it can be desir-
able to focus the fitting procedure on carefully fit-
ting the tail samples. As will be shown, one can
focus MOS by choice of α .

We formulate the following problem, where
ˆ̄qα(X) denotes either a known superquantile or an
empirical estimate from a sample and q̄α(X fΘ) de-
notes parameterized formulas for the superquantile
when X has density function fΘ with the set of
parameters Θ:

Method of Superquantiles (MOS): Fix
α1, ...,αk ∈ [0,1] and choose a parametric dis-
tribution family fΘ with parameters Θ. Solve for Θ

such that,

q̄αi(X fΘ) = ˆ̄qαi(X) for all i = 1, ...,k,

which is a system of k equations in |Θ| unknowns.
This problem, however, may not have a solution.

For example, if k = 2 and the parametric family
only has a single parameter (i.e. |Θ| = 1). In this
case, one can solve the following surrogate Least
Squares minimization problem:

LS Method of Superquantiles (LS-MOS): Fix

α1, ...,αk ∈ [0,1] and choose a parametric distribu-
tion family fΘ with parameters Θ. Choose weights
c1, ...,ck > 0 and solve for,

Θ ∈ argmin
Θ

∑
i

ci
(
q̄αi(X fΘ)− ˆ̄qαi(X)

)2
.

This procedure finds the distribution which has su-
perquantile’s that are close to the empirical su-
perquantile’s. The freedom to select αi as well as ci
provides the user with much flexibility as to which
portion of the distribution should match more ex-
actly the empirical superquantile’s.

Notice that we could have fit bPOE at various
threshold levels z1, ...,zk instead of superquantiles
by solving,

Θ ∈ argmin
Θ

∑
i

ci
(

p̄zi(X fΘ)− ˆ̄pzi(X)
)2

.

where ˆ̄pz(X) denotes empirical bPOE and p̄z(X fΘ)
is a parameterized formula for bPOE for the distri-
bution family fΘ. Importantly, however, note that
the approaches are effectively equivalent due to the
fact that q̄α(X) = z ⇐⇒ p̄z(X) = 1−α . For our
example, we use superquantiles since a closed-form
equation for the superquantile of a weibull is known
and a closed-form equation for bPOE is not.

3.1.1. Example: Fitting Seismic Loss Data
To illustrate the approach, we fit a Weibull distri-
bution to the seismic loss data given before from
Mahsuli (2012). Note that the superquantile of
X ∼ Weibull(λ ,k) is provided in closed form by
Norton et al. (2018) as,

q̄α(X) =
λ

1−α
ΓU

(
1+

1
k
,− ln(1−α)

)
, (5)

where ΓU(a,b) =
∫

∞

b pa−1e−pd p is the upper in-
complete gamma function.

We estimated the weibull parameters using MM,
ML, and the LS-MOS. The MM was solved using
the first two moments. The LS-MOS was solved
twice. It was first solved with α1 = .15,α2 =
.75,c1 = c2 = 1. Then, to put more emphasis on the
tail observations and form a more conservative esti-
mate of the tail and associated exceedances, it was
also solved with α1 = .5,α2 = .75,α3 = .95,c1 =
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Figure 3: Shown is a plot of pairs (q̄α(XE), q̄α(X fΘ
))

for every α ∈ {.01, .02, ..., .99} and every fΘ =ML,MM,
LS1,E where fΘ indicates the method used to fit param-
eters and q̄α(XE) is the empirical superquantile.

c2 = c3 = 1. We denote these solutions as LS1,
LS2 respectively. The ML solution is available in
closed-form and we solved MM, LS1, and LS2 us-
ing Scipy’s optimization library.4

Looking at Figure 3, we have a visual assessment
of the goodness-of-fit of each distribution given by
the SQ-SQ plot, where we have plotted the su-
perquantiles of each distribution paired with the
superquantiles of the empirical distribution. This
is the same as a Q-Q, quantile-quantile, plot but
with superquantiles. We see first that the distribu-
tion produced by ML, as predicted, is not a good
fit and severely underestimates the superquantiles.
The MM distribution is better, but we see that the
distribution produced by LS1 and LS2 are clearly
the best. Additionally, for large α levels (values in
the upper-right corner), we see that LS2 provides
a conservative estimate of the superquantile. This
can be a desirable property of this method, par-
ticularly since random samples often under-sample
high-magnitude/low-probability events in the tail.

Figure 4 shows the bPOE curve of the data, and
the distributions produced by MM and LS2. LS1
and ML are omitted since ML is very poor and the

4Specifically, we used the leastsq function which im-
plements MINPACK’s lmdif routine. This routine requires
function values and calculates the Jacobian by a forward-
difference approximation.

Figure 4: Shown is the tail portion of the bPOE curve
for MM and LS2.

Figure 5: Shown is the POE curve, with x-axis on log-
scale to highlight differences.

bPOE curve from LS1 is indistinguishable from the
one given by LS2. We see from this that LS2 pro-
vides a very tight fit of the empirical bPOE curve
with MM consistently underestimating bPOE. Fig-
ure 5 compares the tail of the POE curves, with the
x-axis on a log-scale to help highlight the differ-
ences between curves. As can be seen on the POE
plot, LS1 and LS2 again provide the best fit. The
distribution produced by MM consistently overes-
timates POE below the α = .95 quantile. And, as
before, we see that ML provides a poor fit.

4. CONCLUSION
Assessing the risk of exceedance events with proba-
bility of exceedance, while intuitive, can often hide
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important information about the magnitude of ex-
ceedance events beyond the critical threshold and
near-exceedance events below the threshold. Us-
ing, instead, bPOE to assess the risk of exceedance
events provides a simultaneous assessment of the
frequency and magnitude of exceedance events,
as well as the frequency and magnitude of near-
exceedance events. Ignoring these aspects of the
tail can lead to false confidence in a low-risk assess-
ment of large losses, damages, or failures in sys-
tem risk analysis. We illustrated a use of bPOE for
measuring the risk of exceedance events on seismic
loss data, showing that bPOE provides a much more
conservative assessment of exceedance risk com-
pared to POE which is well justified by the potential
impact of events that, while being low-probability,
have magnitude that is catastrophically large.

With bPOE serving as a measure of tail risk, one
would naturally like to incorporate it into distribu-
tion fitting procedures, particularly when the pri-
mary goal of the fitting is to accurately estimate the
tail and subsequently assess the risk of exceedance
events. In this direction, we showed how one can
incorporate bPOE into a simple parametric distri-
bution fitting procedure via the use of superquan-
tiles. Using a closed-form expression for the su-
perquantile of a weibull distribution, we were able
to perform a method of moments style fitting pro-
cedure, where we utilized superquantiles instead of
moments. We were also able to easily adapt the
simple Q-Q plot goodness-of-fit test to create a SQ-
SQ plot. This served as a natural way to assess and
compare the fits of competing methods where the
fitness criteria is based upon bPOE and superquan-
tiles.
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