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Abstract

We approach the problem of binary classification by minimizing Buffered Probability of Ex-
ceedance (bPOE), a new characterization of uncertainty proved to be the minimal quasiconvex
upper bound of Probability of Exceedance (POE), i.e. the expected value of the 0-1 loss. We
prove that a broad class of regularized and robust Support Vector Machine (SVM) formulations
are special cases of this approach. This provides a new statistical perspective on the optimality
of the hinge loss as an approximation of 0-1 loss, the meaning of the SVM’s free parameters,
the meaning of its objective function, and the interpretation of the classification margin induced
by the choice of regularizer. Additionally, it provides a connection between regularization and
robustness that extends the current views in the literature. Overall, we find that bPOE mini-
mization provides a unifying view of many SVM variants, including regularized, robust, convex,
and non-convex formulations.

1 Introduction

For the task of binary classification, SVM’s (Cortes and Vapnik (1995)) have proven to be an

extremely popular tool for classification. With SVM’s based upon sound geometric intuition and

statistical learning principals, there have been many proposed customizations of the base formu-

lation to deal with special circumstances such as imbalance classes (Osuna et al. (1997)), cost

sensitivity, semi-supervised and manifold learning (Belkin et al. (2006), Shen et al. (2015)), and

AUC maximization (Herbrich et al. (1999), Rakotomamonjy (2004), Brefeld and Scheffer (2005)).

In addition, to improve generalization, designs have been proposed that use different regularizers

(Wang et al. (2006)) as well as ideas from robust optimization (Katsumata and Takeda (2015),

Trafalis and Gilbert (2007), Bhattacharyya et al. (2005), El Ghaoui et al. (2003)) where data is
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viewed as lying in some fixed uncertainty set. Nevertheless, two primary components are relevant

in most formulations. First, the hinge loss function is used as a convex upper bound to the 0-1 loss.

Second, regularization or robust optimization is introduced for improved generalization.

In this paper, we approach the binary classification problem from a statistical perspective by min-

imizing bPOE, a new characterization of uncertainty proved to be the minimal quasiconvex upper

bound of POE, i.e. the expected value of the 0-1 loss. We prove that a broad class of regularized

and robust SVM formulations are special cases of this approach, particularly its convex case. This

provides a new statistical perspective on the optimality of the hinge loss as an approximation of

0-1 loss, the meaning of the SVM’s free parameters, the meaning of its objective function, and the

interpretation of the classification margin induced by the choice of regularizer.

Additionally, this new perspective allows us to connect regularization and robustness, extending

the current views in the literature. In Xu et al. (2009), Katsumata and Takeda (2015), SVM’s

regularized with a norm, or with convex combinations of norms, are shown to be equivalent to

robust formulations with uncertainty sets characterized by the associated dual norm. We generalize

this view and show that a broader class of regularized SVM’s can be posed as robust SVM’s where

the choice of uncertainty set is determined by the regularization function and free parameter.

Specifically, we show that the uncertainty set is the convex set which has support function equal

to the regularization function scaled by the free parameter.

Finally, after showing that many convex SVM’s are special cases of the convex case of the bPOE

minimization problem, we show that the bPOE minimization also has a non-convex case. Thus, we

can view many cases of the bPOE minimization as being an extended formulation of the related

SVM’s, where the range of free parameter is extended to provide a wider variety of potentially

optimal hyperplanes. We show that some of the existing non-convex SVM’s in the literature are

also special cases of this bPOE minimization problem.

The remainder of this paper is organized as follows. In Section 2, we review bPOE and the concept

of the superquantile, along with its properties and calculation formula. In Section 3, we first

review a common form of regularized SVM’s. Then, we pose a bPOE minimization problem for

binary classification and show that for a certain parameter range, the regularized SVM and bPOE
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minimization problem provide the same set of optimal solutions. We then show that this provides

new interpretations for aspects of the SVM. In Section 4, we consider a robust bPOE minimization

problem, show that the regularized SVM’s form a special case, and draw connections between

the choice of regularizer and the equivalent choice of uncertainty set. In Section 5, we briefly

address the non-convex case of the bPOE minimization problem, show how it fits into the current

SVM literature, and provide an intuitive interpretation from a robust optimization perspective.

We conclude in Section 6. Appendix A overviews the examples given in Table 1 and Table 2

of SVM’s that are special cases of bPOE minimization, providing also references and notational

information.

2 Background: Buffered Probability of Exceedance and Superquantiles

When working with optimization of tail probabilities, one frequently works with constraints or

objectives involving probability of exceedance (POE), pz(Z) = P (Z > z), or its associated quantile

qα(Z) = min{z|P (Z ≤ z) ≥ α}, where α ∈ [0, 1] is a probability level and z ∈ R is a fixed

threshold level. The quantile is a popular measure of tail probabilities in financial engineering,

called within this field Value-at-Risk by its interpretation as a measure of tail risk. The quantile,

though, when included in optimization problems via constraints or objectives, is quite difficult to

treat with continuous (linear or non-linear) optimization techniques.

A significant advancement was made by Rockafellar and Uryasev Rockafellar and Uryasev (2000) in

the development of an approach to combat the difficulties raised by the use of the quantile function

in optimization. They explored a replacement for the quantile, called CVaR within the financial

literature, and called the superquantile in a general context. The superquantile is a measure of

uncertainty similar to the quantile, but with superior mathematical properties. Formally, the

superquantile (CVaR) for a continuously distributed real valued random variable Z is defined

as

q̄α(Z) = E [Z|Z > qα(Z)] . (1)
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For general distributions, the superquantile can be defined by the following formula,

q̄α(Z) = min
γ

γ +
E[Z − γ]+

1− α
, (2)

where [·]+ = max{·, 0}. Similar to qα(Z), the superquantile can be used to assess the tail of the

distribution but is far easier to handle in optimization contexts. It also has the important property

that it considers the magnitude of events within the tail.

Working to extend this concept, bPOE was developed as the inverse of the superquantile in the

same way that POE is the inverse of the quantile1. bPOE is defined in the following way, where

supZ denotes the essential supremum of random variable Z.

Definition 1. bPOE for a random variable Z at a threshold z equals

p̄z(Z) =


max{1− α|q̄α(Z) ≥ z}, if z ≤ supZ,

0, otherwise.

In words, for any threshold z ∈ (E[Z], supZ), bPOE can be interpreted as one minus the probability

level at which the tail expectation, or superquantile, equals z. Although bPOE seems troublesome

to calculate, Norton and Uryasev (2014) provides the following calculation formula for bPOE.

Proposition 1. Given a real valued random variable Z and a fixed threshold z, bPOE for random

variable Z at z equals

p̄z(Z) = inf
γ<z

E[Z − γ]+

z − γ
=



lim
γ→−∞

E[Z−γ]+
z−γ = 1, if z ≤ E[Z],

min
γ<z

E[Z−γ]+
z−γ , if z ∈ (E[Z], supZ),

lim
γ→z−

E[Z−γ]+
z−γ = P (Z = supZ), if z = supZ,

min
γ<z

E[Z−γ]+
z−γ = 0, if supZ < z.

(3)

It is also important to note that formula (3) has the following properties.

Property 1 (Norton and Uryasev (2014)). If z ∈ (E[Z], supZ) and min
γ<z

E[Z−γ]+
z−γ = E[Z−γ∗]+

z−γ∗ =

1bPOE was also developed as a generalization to Buffered Probability of Failure from Rockafellar and Royset
(2010)
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1− α∗, then:

p̄z(Z) = 1− α∗, q̄α∗(Z) = z, qα∗(Z) = γ∗.

Property 2 (Mafusalov and Uryasev (2015)). bPOE is the minimal quasiconvex upper bound of

POE.

Thus, using formula (3), bPOE can be efficiently calculated and we can recover quantile and

superquantile information. Furthermore, bPOE has many advantageous mathematical properties,

which Mafusalov and Uryasev (2015) explores in depth, and is shown to be the best quasiconvex

upper bound for POE.

3 SVM’s and bPOE Minimization

3.1 Regularized SVM’s

In the typical machine learning setup for binary classification, we have a random feature vector

X ∈ Rn, random label Y ∈ {−1,+1}, and N observations of random pairs (Xi, Yi), i = 1, ..., N . We

then would like to use these observations to learn a scoring function h : RN → R to properly predict

the class of unlabelled feature vectors via a decision function Y = sign(h(X)). In the context of

SVM’s, the method of finding the best classifier is to use the scoring function h(w, b,X) = wTX+b,

w ∈ Rn, b ∈ R and to minimize the probability of misclassifications, which is written in terms of the

expected value of the 0-1 loss function. Specifically, with 0-1 loss written as the indicator function

I{−Y (wTX+b)>0}, we have that the probability of misclassification is the expected value of the 0-1

loss,

P (−Y (wTX + b) > 0) = E
[
I{−Y (wTX+b)>0}

]
.

Since the 0-1 loss is difficult to handle in optimization and also does not take into account the mag-

nitude of misclassification errors, SVM’s approximate this objective by using a convex upper bound

of the 0-1 loss, specifically the hinge loss [−Y (wTX + b) + 1]+, and minimize its expectation,

min
w,b

E
[
−Y (wTX + b) + 1

]+
.
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In addition, a regularization term g : Rn → R is added to this objective function with a tradeoff

parameter z ≤ 0 to produce a classifier with a large margin2 or to simply penalize the complexity of

the resulting classifier. They then attempt to solve a problem of the following form, where g(w) is

typically non-negative, convex, and positive homogenous (PH)3 and we have parameters pi ∈ [0, 1],

which are probabilities4 such that
∑

i pi = 1 since we are minimizing an expectation of the hinge

loss.

min
w,b

∑
i

pi[−Yi(wTXi + b) + 1]+ − zg(w) (4)

3.2 bPOE minimization and the bSVM

For our framework, we approach the problem by minimizing bPOE, yielding a regularized formu-

lation with an interpretable parameter and objective function. First, we consider the random loss

−Y (wTX+b)
g(w) . We include a non-negative, convex, positive homogenous (PH) term in the denomi-

nator to penalize classifiers with large complexity. We can also interpret this as a normalized loss

distribution, normalized via g(w). We would still like to minimize POE, since

P (
−Y (wTX + b)

g(w)
> 0) = P (−Y (wTX + b) > 0) = P (sign{wTX + b} 6= Y ) .

This is difficult to optimize and also does not take into account the magnitude of the errors, so we

instead minimize bPOE, the minimal quasiconvex upper bound of POE. We also consider non-zero

thresholds z ∈ R so that we can perform some type of model selection. Thus, we find the classifier

(w, b) that minimizes bPOE of the normalized loss distribution −Y (wTX+b)
g(w) at threshold z by solving

the following problem, which we call the bSVM.

min
w,b

p̄z(
−Y (wTX + b)

g(w)
). (5)

2In the case of using a norm for regularization, the geometric concept of a margin is used to interpret the
regularization.

3A function f : Rn → R is positive homogenous if af(w,X) = f(aw,X) for any a ≥ 0.
4These are typically assumed to be 1

N
, i.e. equally probable realizations.
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Table 1: List of SVM’s and how their structure corresponds to (7). Note that all g(w) are convex, PH,
and non-negative and thus fit the requirements of Proposition 2. See Appendix for brief description of these
SVM’s, related references, and explanation of notation.

SVM Formulation f(w,X) g(w) pi
C-SVM −Y (wTX + b) ‖w‖ 1

N

2C-SVM −Y (wTX + b) ‖w‖ P (Y=Yi)
2

Cost Sensitive SVM −Y (wTX + b) ‖w‖ pi |
∑

i pi = 1

ElasticNet-SVM −Y (wTX + b) λ‖w‖1 + (1− λ)‖w‖2 1
N

Laplacian-SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖wTDM‖2 1
N

Sparsity Preserving SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖wTX(I − S)‖2 1
N

RankSVM −wT (X+ −X−) ‖w‖ 1
N

This can be posed equivalently as the following5:

min
w,b

∑
i

pi[−Y (wTX + b)− zg(w) + 1]+ (6)

3.3 SVM’s are bPOE minimization with z ≤ 0

Here, we show via Proposition 2 that (4) and the bSVM (6) are equivalent over the parameter range

z ≤ 0. This result implies that a wide variety of SVM’s are equivalent to bPOE minimization.

Table 1 lists some example SVM’s and shows how they fit into the form of (7) and (8). Note that

Proposition 2 proves a more general case, of which (4) and the bSVM are special cases, where we

replace −Y (wTX + b) with a more general convex, PH function f(w,X). Thus, instead of (4), we

have (7).

min
w

∑
i

pi[f(w,X) + 1]+ − zg(w) (7)

Furthermore, instead of (5) and (6), we have (8) and its equivalent representation (9).

min
w

p̄z(
f(w,X)

g(w)
) (8)

min
w

∑
i

pi[f(w,Xi)− zg(w) + 1]+ (9)

Proposition 2. Assume that f(w,X) and g(w) are real valued, convex functions that are positive

5To see this equivalence, rewrite (8) with the denominator as a constraint g(w) = 1, apply (3), and make the
change of variable wnew = w

z−γ . For details, see a similar proof from Section 4.3 of Norton et al. (2015).
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homogenous w.r.t. w ∈ Rn and that pi ∈ [0, 1] such that
∑

i pi = 1. Furthermore, assume that

g(w) is non-negative. Then, over the parameter range z ≤ 0, (9) and (7) produce the same set of

optimal solutions.

Proof. We omit the lengthy proof for brevity and refer readers to the proofs of theorems in Section

6 of Norton et al. (2015). The proof structure is identical except that Norton et al. (2015) consider

the special case of f(w,X) = −Y (wTX + b) and g(w) = ‖w‖. In principal, the proof works by

analyzing the KKT systems of (9) and (7) and finding the appropriate choice of parameters so that

the KKT systems become equivalent.

3.4 New Interpretations of the SVM

The bSVM formulation, being simply bPOE minimization, is much easier to interpret than (4).

Specifically, have the following property which shows that the optimal objective value, free param-

eter, and classification ‘margin’ have exact interpretations as statistical quantities relating to the

optimal loss distribution. This follows directly from Property 1.

Property 3. Assume for z ∈ R, that 1− α∗ = min
w,b

∑
i pi[−Yi(wTXi + b)− zg(w) + 1]+ .

Then for the normalized loss, F :=
(
−Y (w∗TX+b∗)

g(w∗)

)
, at the optimal point (w∗, b∗):

p̄z (F ) = 1− α∗, q̄α∗ (F ) = z, qα∗ (F ) = z − 1

g(w∗)
.

First, notice that the optimal objective value equals a probability level. Second, notice that the free

parameter is bPOE threshold, or equivalently the superquantile at probability level α∗. Third, we

have a new interpretation for what is typically called the ‘margin’ when g(w) = ‖w‖. Specifically,

we have that the margin is the difference between the superquantile and quantile of the optimal

loss distribution,

1

g(w∗)
= z − qα∗ (F ) .

Additionally, note that in formulating the bSVM we do not explicitly utilize the hinge loss function

as an approximation or upper bound of the 0-1 loss. The hinge loss naturally arises from minimizing

bPOE, e.g. see (6) for z = 0. This is an interesting observation, as it is suggested in Rosasco et al.
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(2004) that the hinge loss is the best convex approximation to the 0-1 loss. The fact that the hinge

loss is a byproduct of minimizing bPOE, the minimal quasiconvex upper bound of POE, shows

that it can indeed be viewed as an optimal convex approximation to the 0-1 loss.

4 Robust bSVM and SVM’s with Uncertainty

In this section, we consider a robust form of bPOE minimization. Specifically, we consider a

simplified case of the following general problem where we minimize bPOE at threshold z = 0 where

our random vector X is subjected to best-case optimistic uncertainty δO ∈ CO and worst-case

pessimistic uncertainty δP ∈ CP with CO, CP being sets of random vectors.

min
w,δO

max
δP

p̄0
(
f(w,X + δO + δP )

)
s.t. δO ∈ CO

δP ∈ CP .

(10)

With some simplifying assumptions, we can present this problem in the traditional robust optimiza-

tion framework, optimizing over fixed uncertainty sets. We call this new formulation the Robust

bSVM (RObSVM). We show that this formulation is relevant for the following reasons. First, the

RObSVM gives us a formulation with many degrees of flexibility that allow us to combine multiple

strategies for robust classifier design in an intuitive way. Second, we show that the bSVM is a spe-

cial case of the RObSVM, allowing us to pose equivalent RO formulations for any problem posed

as (4) or (6). Third, we see that many Robust SVM’s are special cases of the RObSVM. Fourth,

this provides a unique perspective for the convex and non-convex case of the bSVM and RObSVM,

specifically showing that the convex case can be viewed as taking a pessimistic view of uncertainty

while the non-convex case can be interpreted as taking an optimistic view of uncertainty.

4.1 Robust bSVM

The RObSVM is formulated by simplifying (10) with the following assumptions which allow us to

consider, individually, uncertainty about each observation Xi of X as well as formulate this uncer-
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tainty as convex sets. Proposition 3 will further clarify the reasoning for these assumptions.

First, we let f(w,X + δO + δP ) := −Y (wT (X + δO + δP ) + b). Second, we assume we have N

observations (X1, Y1), ..., (XN , YN ). Third, we assume that every δO ∈ CO and δP ∈ CP are discrete

random vectors with N outcomes δO1 , ..., δ
O
N and δP1 , ..., δ

P
N where P (δ = δi|X = Xi) = 1. Fourth,

we confine each outcome to a closed convex set such that δOi ∈ C(gOi , z
O
i ) and δPi ∈ C(gPi , z

P
i )

for every i = 1, ..., N where C(gOi , z
O
i ), C(gPi , z

P
i ) denote closed convex sets. To form these closed

convex sets, we first specify convex PH functions gPi : Rn → R and gOi : Rn → R for i = 1, ..., N

and non-negative parameters zPi , z
O
i ≥ 0. Then, for any z ≥ 0, g : Rn → R, we define the closed

convex set C(g, z) ⊆ Rn to be the closed convex set which has support function zg. Recall that a

closed convex set C has support function g if g(w) = maxδ∈C w
T δ for any w ∈ Rn. Thus, following

from Corollary 13.2.1 in Rockafellar (2015), we know that given any convex PH function gz, it is

the support function for the closed convex set,

C(g, z) = {δ ∈ Rn|∀δ̂ ∈ Rn, δT δ̂ ≤ zg(δ̂)} .

Making these assumptions, (10) becomes the following formulation, which we call the RObSVM.

min
w,δOi

max
δPi

p̄0
(
−Y (wT (X + δO + δP ) + b)

)
s.t. δOi ∈ C(gOi , z

O
i ) , i = 1, ..., N

δPi ∈ C(gPi , z
P
i ) , i = 1, ..., N.

(11)

Intuitively, we individually design each of the 2N uncertainty sets by making two choices. First, we

choose the function g which defines the shape of the convex set C(g, z). Second, we vary the size of

C(g, z) by choosing the scaling parameter z ≥ 0. The primary reason for defining the sets C(g, z)

in terms of a support function is that it allows us to reformulate the RObSVM in the following

way.

Proposition 3. Assume we have realizations (X1, Y1), ..., (XN , YN ) and probabilities pi ∈ [0, 1],∑
i pi = 1. The RObSVM, (11), can be reformulated as (12) without changing the optimal objective
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value or optimal variables w, b.

min
w,b

∑
i

pi[−Yi(wTXi + b) + zPi g
P
i (w)− zOi gOi (w) + 1]+ (12)

Proof. Applying bPOE formula (3) to (11), bringing the minimization and maximization w.r.t. δO

and δP inside the summation, and simplifying yields,

min
w,b

∑
i

pi[−Yi(wTXi + b) + min
δOi ∈C(gOi ,z

O
i )

(−YiwT δOi ) + max
δPi ∈C(gPi ,z

P
i )

(−YiwT δPi ) + 1]+ . (13)

By definition, zg is the support function of C(g, z), meaning that maxδ∈C(g,z)w
T δ = zg(w). There-

fore,

min
δOi ∈C(gOi ,z

O
i )
−Y wT δOi = min

δOi ∈C(gOi ,z
O
i )

(wT δOi ) = − max
δOi ∈C(gOi ,z

O
i )
−wT δOi = − max

δOi ∈C(gOi ,z
O
i )
wT δOi = −zOi g(w)

and maxδPi ∈C(gPi ,z
P
i )−YiwT δPi = zPi g

P
i (w). Using this to simplify (13) yields (12).

4.2 The bSVM as a special case

Using Proposition 3, it is then easy to see that the bSVM is a special case of the RObSVM where

each disturbance δi is confined to the same uncertainty set. Specifically, assume the bSVM is

formulated with g and z ≤ 0, and is thus the convex case. Then, the bSVM is equivalent to

the RObSVM with only pessimistic disturbances, where δPi ∈ C(g,−z) for every i = 1, ..., N and

δOi = 0 for every i = 1, ..., N . On the other hand, assume that the bSVM is formulated with

g and z > 0, and is thus the non-convex case. Then, the bSVM is equivalent to the RObSVM

with only optimistic disturbances, where δOi ∈ C(g, z) for every i = 1, ..., N and δPi = 0 for every

i = 1, ..., N .

This result is enlightening for any SVM fitting the form of (4). Proposition 2 showed that these

SVM’s are equivalent to the bSVM with z ≤ 0. Thus, using the RObSVM we can formulate robust

representations of these SVM’s by forming the set C(g, z) which has zg as its support function.

A connection of this kind between robustness and regularization has been explored in Xu et al.

(2009), but this is a more extensive connection between the choice of regularizer and the implied
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Table 2: List of SVM’s and the uncertainty set C(gi, zi) implied by choice of gi(w) and zi. See Appendix
for brief description of these SVM’s, related references, and explanation of notation.

SVM Formulation f(w,X) gi(w) C(gi, zi)

C-SVM & 2C-SVM & Cost-SVM −Y (wTX + b) ‖w‖ {δ | ‖δ‖∗ ≤ |z|}
Robust Cost-SVM −Y (wTX + b) ‖w‖ {δ | ‖δ‖∗ ≤ |zi|}
Robust ElasticNet-SVM −Y (wTX + b) λ‖w‖1 + (1− λ)‖w‖2 {δ | λ‖δ‖∞ + (1− λ)‖δ‖2 ≤ |zi|}
Laplacian-SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖wTDM‖2 {δ | δT δ̂ ≤ |z|(λ‖ δ̂‖+ (1− λ)‖δ̂TDM‖2) ,∀ δ̂ ∈ Rn}
Sparsity Preserving SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖wTX(I − S)‖2 {δ | δT δ̂ ≤ |z|(λ‖ δ̂‖+ (1− λ)‖δ̂TX(I − S)‖2) ,∀ δ̂ ∈ Rn}
RankSVM −wT (X+ −X−) ‖w‖ {δ | ‖δ‖∗ ≤ |z|}
Ellipsoid Uncertainty SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖Σ

1
2w‖2 {δ | δTΣ−1i δ ≤ zi}

Interval Uncertainty SVM −Y (wTX + b) λ‖w‖+ (1− λ)‖Siw‖1 {δ | δT δ̂ ≤ |zi|(λ‖ δ̂‖+ (1− λ)‖Siδ̂‖1) ,∀ δ̂ ∈ Rn}

uncertainty set. In Table 2, we list examples of SVM’s that are special cases of the RObSVM

and show the types of uncertainty sets that characterize their robust equivalents. Additionally,

note that some examples in Table 2 are special cases of the RObSVM but are not special cases of

the bSVM. They utilize different uncertainty sets for each disturbance δi, i = 1, ..., N by choosing

different gi and zi. For example, the Robust Cost-SVM from Katsumata and Takeda (2015) selects

zi individually to reflect cost considerations and the Interval Uncertainty considered by El Ghaoui

et al. (2003) selects gi individually to consider different uncertainty intervals for every sample.

5 Non-Convex bSVM and RObSVM, Extending SVM’s with Optimism

In previous sections, we primarily considered the convex case of the RObSVM and bSVM in relation

to equivalent SVM’s. These formulations, though, also have non-convex cases for particular choice

of parameter z which we briefly discuss in this section. Specifically, for the bSVM it is convex

when z ≤ 0 and non-convex when z > 0. For the RObSVM, it is convex when only pessimistic

disturbances are added to the data and non-convex when optimistic disturbances are additionally

considered. Thus, for SVM’s fitting into the form of (7), (4), or fitting the convex case of the

RObSVM, we can view the bSVM and RObSVM as extended formulations. Over the non-convex

case, the bSVM extends the allowable range of parameter and can achieve a larger variety of optimal

hyperplanes. The RObSVM, over the non-convex case, considers optimistic uncertainty, extending

the set of achievable hyperplanes.

Special cases of the non-convex bSVM and RObSVM do exist in the SVM literature, although

they are far less common due to the difficulty in optimizing the non-convex objective function.

Non-convex extensions of SVM’s have been developed for the C-SVM. Furthering work done by

12
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Pérez-Cruz et al. (2003) which developed the Extended ν-SVM (Eν-SVM), a non-convex extension

of the ν-SVM proposed in Schölkopf et al. (2000), the Extended C-SVM (EC-SVM) was proposed

by Norton et al. (2015). The formulation is exactly the bSVM with g(w) = ‖w‖ and pi = 1
N .

Furthermore, in the robust context, Zhang (2005) proposed the Total Support Vector Classifier

(TSVC), a non-convex robust SVM utilizing norm based uncertainty to deal with noise. This

formulation is exactly the RObSVM with only norm constrained optimistic disturbances ‖δOi ‖ ≤ zOi

for every i = 1, ..., N . Although difficult to optimize, evidence was presented that these formulations

performed better than their convex counterparts on some data sets. In particular, Zhang (2005)

showed that the TSVC was robust to noisy input data. In the context of our proposed scheme

and interpretation, the performance of the TSVC makes sense. If data are corrupted with noise,

perhaps an optimistic view of the data would produce better classification.

Future work: Sparsity inducing regularizers and non-convex extensions Recently, non-

convex regularization schemes have shown great success in inducing sparsity, see e.g. Tono et al.

(2017), Gotoh et al. (2015), Yin et al. (2015). Therefore, it is interesting to note that some of

these regularization schemes can be represented using our framework as the RObSVM formulated

with a combination of optimistic and pessimistic uncertainty, yielding a non-convex regularizer

zPi g
P
i (w) − zOi g

O
i (w). Thus, it would be interesting to fully explore this new interpretation for

non-convex regularization and to propose new non-convex regularization schemes.

Given the numerical success of extended, non-convex formulations presented in Pérez-Cruz et al.

(2003), Zhang (2005), we feel that it would also be beneficial to explore other, more flexible, non-

convex formulations. For example, our formulation suggests that the Laplacian-SVM has a non-

convex extension. Numerical studies should be conducted to determine the use and effectiveness of

such extended formulations. In addition, the recent success of non-convex optimization techniques,

such as DCA Dinh and Le Thi (2014), present a path toward practical solution methods.

13
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6 Conclusion

In this paper, we approached the binary classification problem by minimizing bPOE, the minimal

quasiconvex approximation to POE. We showed that a variety of regularized and robust SVM’s are

special cases of this approach. This new perspective on SVM’s is beneficial, providing a statistical

interpretation for its optimal objective value, its free parameter, and the margin induced by the

choice of regularizer. Additionally, we are able to provide a strong connection between regularization

and robustness that extends the current understanding in the literature. We show that regularized

SVM’s can be cast as robust SVM’s where data uncertainty is characterized by a convex uncertainty

set which has support function equal to the regularization function scaled by the value of the free

parameter z. Additionally, we show that the bPOE minimization problems have both convex and

non-convex cases, extending the set of optimal hyperplanes achievable by related convex SVM

formulations. Furthermore, we find that the robust perspective provides an intuitive view of the

convex and non-convex case as related to optimistic or pessimistic views of the data set. Overall, we

find that bPOE minimization provides a unifying view of many SVM variants, including regularized,

robust, convex, and non-convex formulations.

A Overview of SVM formulations in Table 1 and 2

Within the Table 1 and 2, let ‖ · ‖ denote a general norm, let ‖ · ‖∗ denote its dual norm, let ‖ · ‖p
denote the Lp norm, and let λ ∈ [0, 1] be used to denote a convex combination. Notation that is
specific to certain SVM’s can be found in the following overview of formulations.

• C-SVM: Original formulation from Cortes and Vapnik (1995).

• 2C-SVM: SVM for unbalanced classes from Osuna et al. (1997).

• ElasticNet-SVM: Doubly regularized SVM from Wang et al. (2006), with λ ∈ [0, 1].

• Laplacian-SVM: Semi-Supervised Manifold regularization from Belkin et al. (2006). We have
a set of unlabeled, U , and labeled, X, data D = [X,U ]. We form and decompose the
Laplacian L = MMT (see e.g. Von Luxburg (2007) for a tutorial on the Laplacian). We form
the regularizer g(w) = λ‖w‖+ (1− λ)‖wTDM‖ where λ ∈ [0, 1].

• Sparsity Preserving-SVM: Manifold Regularization scheme from Shen et al. (2015). Similar
to Laplacian-SVM, but with I denoting the identity matrix and S a sparse representation of
the data set X found via sparse coding.
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• Rank SVM: AUC maximizing SVM from Herbrich et al. (1999), Rakotomamonjy (2004),
Brefeld and Scheffer (2005). X+, X− denote random vectors with positive and negative label
respectively.

• Robust Cost-SVM: Cost sensitive formulation from Katsumata and Takeda (2015) putting
larger uncertainty around minority class data vectors.

• Robust ElasticNet-SVM: Robust variant of ElasticNet from Katsumata and Takeda (2015).

• Ellipsoid Uncertainty SVM: SVM considering ellipsoid uncertainty with ellipsoid shape matrix
Σ−1 from Trafalis and Gilbert (2007), Bhattacharyya et al. (2005).

• Interval Uncertainty SVM: SVM considering hyper-rectangular uncertainty sets from El Ghaoui
et al. (2003).
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