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Abstract

In this paper, we show that the popular C-SVM, soft-margin support vector classifier is
equivalent to minimization of Buffered Probability of Exceedance (bPOE), a recently intro-
duced characterization of uncertainty. To show this, we introduce a new SVM formulation,
called the EC-SVM, which is derived from a simple bPOE minimization problem that is
easy to interpret with a meaningful free parameter, optimal objective value, and probabilis-
tic derivation. Over the range of its free parameter, the EC-SVM has both a convex and
non-convex case which we connect to existing SVM formulations. We first show that the
C-SVM, formulated with any regularization norm, is equivalent to the convex EC-SVM.
Similarly, we show that the Eν-SVM is equivalent to the EC-SVM over its entire parameter
range, which includes both the convex and non-convex case. These equivalences, coupled
with the interpretability of the EC-SVM, allow us to gain surprising new insights into the
C-SVM and fully connect soft margin support vector classification with superquantile and
bPOE concepts. We also show that the EC-SVM can easily be cast as a robust optimization
problem, where bPOE is minimized with data lying in a fixed uncertainty set. This refor-
mulation allows us to clearly differentiate between the convex and non-convex case, with
convexity associated with pessimistic views of uncertainty and non-convexity associated
with optimistic views of uncertainty. Finally, we address some practical considerations.
First, we show that these new insights can assist in making parameter selection more ef-
ficient. Second, we discuss optimization approaches for solving the EC-SVM. Third, we
address the issue of generalization, providing generalization bounds for both bPOE and
misclassification rate.

Keywords: Support Vector Machines, Buffered Probability of Exceedance, Conditional
Value-at-Risk, Binary Classification, Robust Optimization

1. Introduction

In the machine learning community, the Soft Margin Support Vector Machine (C-SVM)
has proven to be an extremely popular tool for classification, spawning generalizations for
regression, robust optimization, and a host of other applications. With its connection to
statistical learning theory, intuitive geometric interpretation, and efficient extensions to
non-linear classification, the C-SVM has proven to be a flexible tool based on sound theory
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and intuition. Still, there are insights left to be gained with regard to soft margin support
vector classification.

One such insight was revealed by Takeda and Sugiyama (2008), where it was shown
that the Eν-SVM, an extension of the ν-SVM, is equivalent to superquantile minimization.
Superquantiles, popularized in the financial engineering literature under the name Condi-
tional Value-at-Risk (CVaR), were developed by Rockafellar and Uryasev (2002) as means
for dealing with optimization of quantiles. Utilizing the popular calculation formula for
superquantiles, Takeda and Sugiyama (2008) showed that the Eν-SVM was equivalent to
superquantile minimization, with the free parameter of the Eν-SVM being equivalent to the
free choice of probability level in superquantile minimization.

In this paper, we provide insights in a similar direction by utilizing the inverse of the su-
perquantile, so called Buffered Probability of Exceedance (bPOE). More specifically, bPOE
is a generalization of buffered Probability of Failure (bPOF) which was introduced by Rock-
afellar (2009) and further studied in Rockafellar and Royset (2010). This generalization,
recently studied by Mafusalov and Uryasev (2015); Norton and Uryasev (2014); Norton
et al. (2015); Davis and Uryasev (2014); Uryasev (2014), has shown a great deal of promise
as generating numerically tractable methods for probability minimization.

Utilizing the bPOE concept, we introduce a new SVM formulation called the Extended
Soft Margin Support Vector Machine (EC-SVM). Being derived as a bPOE minimization
problem, the EC-SVM is simple to interpret. First, we show that the EC-SVM has a
free parameter interpretable as a specific statistical quantity related to the optimal loss
distribution. Second, we show that the value of the optimal objective function (divided
by sample size) is equal to a probability level. Lastly, we show that the EC-SVM can be
interpreted as having a hard-margin criterion. Additionally, with the EC-SVM formulated
with any general norm, we show that the choice of norm implies a distance metric which
defines the hard-margin criterion.

After introducing the EC-SVM, we then connect it to existing SVM formulations. In
our main result, we show that the C-SVM and EC-SVM, when formulated with any general
norm and non-negative parameter values, produce the same set of optimal hyperplanes. This
result implies that the original soft-margin SVM formulation, derived in great part from
geometric intuition, is equivalent to minimization of bPOE, a probabilistic concept. This
result also implies that the interpretation of the EC-SVM’s parameter, optimal objective,
and hard-margin criterion can be applied to the C-SVM. This includes the surprising result
that the optimal objective value of the C-SVM, divided by sample size, equals a probability
level.

We also connect the EC-SVM and Eν-SVM, showing that these SVM formulations
produce the same set of optimal hyperplanes over their entire parameter range. With
bPOE being the inverse of the superquantile, this relationship follows immediately from the
derivation of the EC-SVM as a bPOE minimization problem and the results of Takeda and
Sugiyama (2008). This result also makes it clear that the EC-SVM is an extension of the
C-SVM in the same way that the Eν-SVM is an extension of the ν-SVM.

Additionally, we provide a novel interpretation of the EC-SVM as a robust optimization
(RO) problem, where bPOE is minimized with data points lying in a fixed uncertainty set.
With the EC-SVM having both a convex and non-convex case, depending on the value of
the free parameter, we find that the RO representation reveals a unique interpretation to
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help distinguish these cases. Specifically, the RO representation reveals that the convex
case corresponds to bPOE minimization with worst-case pessimistic data uncertainty, while
the non-convex case corresponds to bPOE minimization with best-case optimistic data un-
certainty. The RO representation also provides other insights. For the convex case, the
RO representation is similar to existing equivalences for the C-SVM presented in Xu et al.
(2009), but with a much simpler proof, definition of uncertainty set, and correspondence
between equivalent parameter values. For the non-convex case, this new representation
suggests an efficient alternating minimization method for finding a local minimum. Fur-
thermore, the RO representation reveals that this seemingly heuristic optimization method
is related to the DC Algorithm, a popular algorithm for finding the local minimum of DC
(difference of convex functions) optimization problems.

Finally, we consider some practical implications of these new theoretical insights. We
show that the new interpretation of the C tradeoff parameter suggests a range that should
be used to select the C parameter. This helps to improve grid selection for cross validation
so that one can partially avoid solving the EC-SVM for values of C that yield trivial or
redundant optimal solutions. Furthermore, using the RO representation of the EC-SVM, we
show that there may be situations where prior knowledge about data uncertainty suggests,
at-best, a fixed C or, at-worst, much tighter bounds for the range of interesting C values
for cross-validation.

We also address the practical issue of generalization. In classification, generalization
bounds are typically provided for misclassification rate because classification algorithms
are viewed as attempts to find classifiers which minimize this performance metric. In this
regard, we utilize results from Takeda and Sugiyama (2008); Schölkopf et al. (2000) to show
that generalization bounds for misclassification rate of EC-SVM classifiers can be posed in
terms of empirical estimates of bPOE, the quantile, and the superquantile. However, with
the new insight that the EC-SVM and C-SVM directly minimize bPOE, we also provide
generalization bounds for this metric. We apply the stability arguments of Bousquet and
Elisseeff (2002) to provide tight generalization bounds on the true bPOE of EC-SVM and
C-SVM classifiers and show that bPOE threshold plays an important role in these bounds.

This paper is organized as follows. Note that in order to make this paper as self-
contained as possible, we include a significant amount of review in the first three sections.
Section 2 reviews some existing SVM formulations relevant to our discussion, specifically
the C-SVM, ν-SVM, and Eν-SVM. Section 3 briefly reviews the concept of a superquantile
and the results of Takeda and Sugiyama (2008), which show that the Eν-SVM is equivalent
to superquantile minimization. Section 4 reviews the bPOE concept, which is critical to
our contribution. Additionally, we present a new formulation for minimizing bPOE in
the presence of Positive Homogenous (PH) random functions. The necessity of this new
formulation is discussed in more detail in Appendix A. Section 5 introduces the EC-SVM
as a bPOE minimization problem and discusses the properties of the EC-SVM and its
interpretation as a hard-margin optimization problem. Section 6 connects the C-SVM and
EC-SVM. Section 7 connects the EC-SVM and Eν-SVM and presents the results of this and
previous papers in a cohesive framework connecting soft margin support vector classification
and superquantile concepts. Section 8 presents dual formulations of the C-SVM and EC-
SVM formulated with any general norm, discusses application of the kernel trick, and shows
that the optimal objective of the C-SVM, divided by sample size, equals a probability level.
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Section 9 shows that the EC-SVM has a novel interpretation as a RO problem, with a
distinction between the convex and non-convex cases. Section 10.1 discusses the issue
of parameter selection. Section 10.2 discusses optimization of the EC-SVM. Section 10.3
provides generalization bounds for misclassification rate and bPOE.

2. C-SVM, ν-SVM, Eν-SVM

In this section, we review three existing SVM formulations; C-SVM, ν-SVM, and Eν-SVM.
We begin with a review of the C-SVM and ν-SVM, reviewing the fact that they share the
same optimal solution sets. We then review the interpretation of the ν-SVM parameter, its
limitations, and the Eν-SVM formulation which serves to resolve these limitations.

2.1 The C-SVM

Consider the task of binary classification where we have a set of N feature vectors Xi ∈ Rn
and associated class labels yi ∈ {−1,+1} and we need to choose a hyperplane w ∈ Rn
with intercept b ∈ R to properly classify feature vectors via the linear decision function
d(w, b,Xi) = sign(wTXi + b).

One of the most successful algorithms for accomplishing this task is the soft-margin SVM
from Cortes and Vapnik (1995), also referred to as the C-SVM. The C-SVM is formulated
as (1), where C ≥ 0 ∈ R is chosen as a fixed tradeoff parameter and the norm is typically
the L2, ‖ · ‖2, or L1, ‖ · ‖1, norm.1 Below, we present it with the general norm, ‖ · ‖.

min
w,b,ξ

C‖w‖+

N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + 1, ∀i ∈ {1, ..., N},
ξ ≥ 0.

(1)

2.2 The ν-SVM

After introduction of the C-SVM, the ν-SVM was introduced by Schölkopf et al. (2000) as
an equivalent formulation with more intuitive parameter choices. C-SVM and ν-SVM, with
the L2 norm, are equivalent in that they provide the same set of optimal solutions over the
space of all possible parameter choices, see Chang and Lin (2001). These algorithms are
different, though, in the meaning of the value of the free parameter. For the C-SVM, there
was no direct interpretation for the meaning of the C-parameter other than as a trade-off
between margin size and classification errors. The ν-SVM, on the other hand, provided a
more interpretable parameter.

1. Often, the squared norm is utilized. We use non-squared for ease of presentation. Many of the ideas in this
paper are also valid for the squared case, however, the proofs are more involved and the correspondence
between formulations is less straight-forward.
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The ν-SVM is traditionally formulated as (2) with the L2 norm, where ν ∈ [0, 1] instead
of C ∈ [0,+∞) is chosen as a fixed tradeoff parameter.

min
w,b,ρ,ξ

1

2
‖w‖22 − νρ+

N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + ρ, ∀i ∈ {1, ..., N},
ξ ≥ 0.

(2)

As already mentioned, the ν-SVM advantageously gives us a free parameter, ν ∈ [0, 1],
with implied meaning. The meaning of ν is shown in Schölkopf et al. (2000) by proving a
variant of Property 1.

Property 1 Assume that there exists a feasible solution (w, b, ρ, ξ) for (2) for parameter
choice ν ∈ [0, 1]. Then the following bounds apply:

• The choice of ν acts as an upper bound on the fraction of errors in the margin:

1− α < ν, where 1− α =
1

N

∣∣{i : yi(w
TXi + b) < ρ}

∣∣ .
• The choice of ν acts as a lower bound on the fraction of support vectors (SV’s), support

vectors being errors that lie in the margin or on the margin boundary:

%SV ′s > ν, where %SV ′s =
1

N

∣∣{i : yi(w
TXi + b) ≤ ρ}

∣∣ .
2.3 The Eν-SVM

Given the natural interpretation for the meaning of the ν-parameter, it would seem normal
to assume that all the values of ν ∈ [0, 1] will yield non-trivial, feasible solutions satisfying
the bounds stated in Property 1. This, though, is not the case. In Chang and Lin (2001),
it was shown that the ν-parameter has a limited range. Specifically, a variant of Property 2
is proved in Chang and Lin (2001).

Property 2

• There exists a minimum and maximum value such that ν ∈ (νmin, νmax] yields fea-
sible (2) with non-trivial solutions, ν ≤ νmin yields (2) with trivial optimal solution
w = b = 0, and ν > νmax yields infeasible (2).

• Furthermore, this limitation in parameter range applies to the C-SVM as well. Specif-
ically, there exists a correspondence in allowable range such that ν → νmin corresponds
to C →∞ and ν → νmax corresponds to C → 0.

To solve this issue, extending the valid range of the ν-parameter to be the entire [0, 1]
interval, Pérez-Cruz et al. (2003) developed an extended ν-SVM formulation called Eν-
SVM (3). The Eν-SVM is traditionally formulated as follows with the L2 norm. We
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present it with the general norm as follows:

min
w,b,ρ,ξ

− νρ+
N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + ρ, ∀i ∈ {1, ..., N},
ξ ≥ 0,

‖w‖ = 1.

(3)

One can view (3) as an extension of (2) in that Pérez-Cruz et al. (2003); Chang and
Lin (2001) showed that the optimal solution to (2), formulated with L2 norm and any
ν0 ∈ (νmin, vmax], is also an optimal solution to (3), formulated with L2 norm, for some
ν1 ≤ ν0. Problem (3), though, can achieve solutions that (2) cannot because of its extended
range of the ν-parameter.

3. Superquantiles and the Eν-SVM

In this section, we first give a brief review of the superquantile concept as introduced
by Rockafellar and Uryasev (2002). We then review the results of Takeda and Sugiyama
(2008), showing that the Eν-SVM is equivalent to superquantile minimization.

3.1 Superquantiles and Tail Probabilities

When working with optimization of tail probabilities, one frequently works with constraints
or objectives involving probability of exceedance (POE), pz(Z) = P (Z > z), or its associated
quantile qα(Z) = min{z|P (Z ≤ z) ≥ α}, where α ∈ [0, 1] is a probability level and z ∈ R is
a fixed threshold level. The quantile is a popular measure of tail probabilities in financial
engineering, called within this field Value-at-Risk by its interpretation as a measure of
tail risk. The quantile, though, when included in optimization problems via constraints
or objectives is quite difficult to treat with continuous (linear or non-linear) optimization
techniques.

A significant advancement was made by Rockafellar and Uryasev (2002) in the devel-
opment of an approach to combat the difficulties raised by the use of the quantile function
in optimization. They explored a replacement for the quantile, called CVaR within the
financial literature and called the superquantile in a general context. The superquantile is
a measure of uncertainty similar to the quantile, but with superior mathematical proper-
ties. Formally, the superquantile (CVaR) for a continuously distributed real valued random
variable Z is defined as,

q̄α(Z) = E [Z|Z > qα(Z)] . (4)

For general distributions, the superquantile can be defined by the following formula,

q̄α(Z) = min
γ

γ +
E[Z − γ]+

1− α
, (5)

where [·]+ = max{·, 0}. For a discretely distributed random variable Z with equally proba-
ble realizations {Z1, Z2, ..., ZN} we can write this formula as the following Linear Program-
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ming problem,

q̄α(Z) = min
γ,ξ

γ +
1

N(1− α)

N∑
i=1

ξi

s.t. ξi ≥ Zi − γ,∀i ∈ {1, ..., N},
ξ ≥ 0.

(6)

Similar to qα(Z), the superquantile can be used to assess the tail of the distribution.
The superquantile, though, is far easier to handle in optimization contexts. It also has the
important property that it considers the magnitude of events within the tail. Therefore,
in situations where a distribution may have a heavy tail, the superquantile accounts for
magnitudes of low-probability large-loss tail events while the quantile does not account for
this information.

3.2 Eν-SVM as Superquantile Minimization

In Takeda and Sugiyama (2008), the meaning of the ν-parameter was solidified by showing
that the Eν-SVM, (3), is equivalent to superquantile minimization. Specifically, they proved
a variant of Property 3.

Property 3 Consider optimization problem (3). Let α = 1 − ν and γ = −ρ. Also, let
L(w, b,X, y) = −y(wTX+b) be a discretely distributed random variable with equally probable
realizations {−y1(wTX1 + b), ...,−yN (wTXN + b)}. With this notation, (3) can be rewritten
as (7), which is equivalent to (8), minimization of the α-superquantile:

min
w,b,γ,ξ

(1− α)

(
γ +

1

N

N∑
i=1

ξi

)
s.t. ξi ≥ −yi(wTXi + b)− γ, ∀i ∈ {1, ..., N},

ξ ≥ 0,

‖w‖ = 1.

(7)

min
w,b

(1− α)q̄α
(
−y(wTX + b)

)
s.t. ‖w‖ = 1.

(8)

With this, one can see that the Eν-SVM is simply minimization of the value (5) mul-
tiplied by 1 − α with the real valued discretely distributed random loss L(w, b,X, y) =
−y(wTX + b) in place of the real valued random variable Z.

4. Buffered Probability of Exceedance (bPOE)

In this section, we first review the concept of bPOE. We show how it is simply one minus the
inverse of the superquantile and review its surprising calculation formula. We then review
how minimization of bPOE integrates quite nicely into optimization frameworks. Finally, we
present a slightly altered formulation for minimization of bPOE in the presence of Positive
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Homogenous (PH) random functions. For the interested reader, we discuss the necessity of
this alteration and derive the formulation in Appendix A. We move this discussion to the
appendix, as it is slightly distracting from the discussion related to support vector machines.

4.1 bPOE: Inverse of the Superquantile

As mentioned in Section 3, when working with optimization of tail probabilities, one fre-
quently works with constraints or objectives involving POE, pz(Z) = P (Z > z), or its
associated quantile qα(Z) = min{z|P (Z ≤ z) ≥ α}, where α ∈ [0, 1] is a probability level
and z ∈ R is a fixed threshold level. The superqunatile was developed to alleviate difficulties
associated with optimization problems involving quantiles. Working to extend this concept,
bPOE was developed as the inverse of the superquantile in the same way that POE is the
inverse of the quantile.

Specifically, there exist two slightly different variants of bPOE, namely Lower and Upper
bPOE. Mafusalov and Uryasev (2015) mainly work with so called Lower bPOE while Nor-
ton and Uryasev (2014) work with so called Upper bPOE. These definitions do not differ
dramatically and a discussion of these differences is beyond the scope of this paper. Thus,
for the remainder of this paper when we refer to bPOE, we are utilizing Upper bPOE. With
this in mind, bPOE is defined in the following way, where supZ denotes the essential supre-
mum of random variable Z. In this paper we assume all random variables to be L1-finite,
Z ∈ L1(Ω), i.e. E|Z| <∞.

Definition 1 Upper bPOE for a random variable Z at a threshold z equals,

p̄z(Z) =

{
max{1− α|q̄α(Z) ≥ z}, if z ≤ supZ,

0, otherwise.

In words, for any threshold z ∈ (E[Z], supZ), bPOE can be interpreted as one minus the
probability level at which the superquantile equals z. Although bPOE seems troublesome to
calculate, Norton and Uryasev (2014) provide the following calculation formula for bPOE.

Proposition 1 Given a real valued random variable Z and a fixed threshold z, bPOE for
random variable Z at z equals,

p̄z(Z) = inf
γ<z

E[Z − γ]+

z − γ
=



lim
γ→−∞

E[Z−γ]+

z−γ = 1, if z ≤ E[Z],

min
γ<z

E[Z−γ]+

z−γ , if z ∈ (E[Z], supZ),

lim
γ→z−

E[Z−γ]+

z−γ = P (Z = supZ), if z = supZ,

min
γ<z

E[Z−γ]+

z−γ = 0, if supZ < z.

(9)

It is also important to note that formula (9) has the following property, Property 4, proved
in Mafusalov and Uryasev (2015) and Norton and Uryasev (2014). This property will
become important in later sections when we begin to interpret the EC-SVM. Note that
for Property 4, we must distinguish between the lower quantile qα(Z) and upper quantile
q+
α (Z) = inf{z|P (Z ≤ z) > α}. However, the difference in these quantities will likely
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be small or zero. For continuously distributed Z, we will have qα(Z) = q+
α (Z) or if Z

is discretely distributed with N equally probably events, and N is reasonably large, the
difference q+

α (Z)− qα(Z) will likely be small, possibly zero.

Property 4 If z ∈ (E[Z], supZ) and min
γ<z

E[Z−γ]+

z−γ = E[Z−γ∗]+
z−γ∗ = 1− α∗, then:

p̄z(Z) = 1− α∗, q̄α∗(Z) = z, γ∗ ∈ [qα∗(Z), q+
α∗(Z)],

where [qα∗(Z), q+
α∗(Z)] is the entire set of minimizers.

Thus, using formula (9), bPOE can be efficiently calculated. Additionally, Property 4 shows
that we can recover quantile and superquantile information. As we demonstrate in the next
section, formula (9) also allows for convenient optimization of bPOE.

4.2 Optimization of bPOE for Random PH Functions

Norton and Uryasev (2014) considered the following optimization setup to demonstrate the
ease with which bPOE can be minimized directly. Assume we have a real valued positive
homogenous (PH) random function f(w,X) determined by a vector of control variables
w ∈ Rn and a random vector X. By definition, a function f(w,X) is PH w.r.t. w if it
satisfies the following condition: af(w,X) = f(aw,X) for any a ≥ 0, a ∈ R.

Now, assume that we would like to find the vector of control variables, w ∈ Rn, that
minimizes the probability of f(w,X) exceeding a threshold z ∈ R. We would like to solve
the POE optimization problem,

min
w∈Rn

pz(f(w,X)). (10)

Here we have a discontinuous and non-convex objective function (assuming a discretely
distributedX) that is numerically difficult to minimize. Consider alternatively minimization
of bPOE instead of POE at the same threshold z. This is posed as the optimization problem,

min
w∈Rn

p̄z(f(w,X)). (11)

Given Proposition 1, (11) can be transformed into the following:

min
w∈Rn,γ<z

E[f(w,X)− γ]+

z − γ
. (12)

Paper Norton and Uryasev (2014), though, limit consideration to only a threshold of
z = 0, in which case formulation (12) reduces to,

min
w∈Rn

E[f(w,X) + 1]+. (13)

As we discuss in Appendix A, formulation (12) has shortcomings for nonzero thresh-
olds. Specifically, it fails to achieve varying optimal solutions for varying threshold levels.
To address these issues, the next section provides an alternative formulation for bPOE
minimization with PH functions f(w,X) that allows effective variation of threshold levels.
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4.3 An Altered Formulation

With (12) failing to achieve varying optimal solutions as the threshold z varies, we find
that adding a constraint on the norm of w remedies this situation (because w can no longer
rescale as the threshold changes). Here ‖ · ‖ denotes any general norm. This gives us

min
w∈Rn,γ<z

E[f(w,X)− γ]+

z − γ
≡ min

w∈Rn
p̄z

(
f(w,X)

‖w‖

)
.

s.t. ‖w‖ = 1

(14)

Furthermore, the following Proposition 2 shows that (14) can be simplified, yielding

min
w∈Rn

E[f(w,X)− z‖w‖+ 1]+. (15)

Proposition 2 Assume f(w,X) is PH with respect to w. If (w∗, γ∗) is optimal to (14) with
optimal objective 1− α∗, then w = w∗

z−γ∗ is optimal to (15) with optimal objective 1− α∗.

Proof For this, we show that (15) is formed only by making a change of variable in (14).
We start with (14). Since γ < z is an explicit constraint and thus z − γ > 0, we bring the
denominator into the expectation in the numerator to get

min
w∈Rn,γ<z

E

[
f

(
w

z − γ
,X

)
−
(

γ

z − γ

)]+

s.t. ‖w‖ = 1.

(16)

Now, make the change of variable wnew = w
z−γ . Since we have the explicit constraint

‖w‖ = 1, we have that ‖wnew‖ =
∥∥∥ w
z−γ

∥∥∥ = ‖w‖
z−γ = 1

z−γ . We can then make the change of

variable to get

min
wnew∈Rn,γ<z

E [f(wnew, X)− ‖wnew‖γ]+ . (17)

We can also rearrange ‖wnew‖ = 1
z−γ to get γ = z − 1

‖wnew‖ and thus that ‖wnew‖γ =

‖wnew‖
(
z − 1

‖wnew‖

)
= z‖wnew‖ − 1. Plugging this into our formulation, we arrive at

min
wnew∈Rn

E[f(wnew, X)− z‖wnew‖+ 1]+, (18)

where due to our change in variable, we see that if we have optimal solution w∗new, then(
w = w∗new

‖wnew‖ , γ = z − 1
‖w∗new‖

)
is optimal to (14) before the change of variable.

Thus, we can turn to (15) as our formulation for bPOE minimization of a PH function
for varying threshold choices. Notice from the proof of Proposition 2 that if w∗ is optimal

to (15) then (w = w∗

‖w∗‖ , γ = z − 1
‖w∗‖) is optimal to (14). Also, let us call f

(
w∗

‖w∗‖ , X
)

the

normalized loss distribution at w∗. Given Property 4, if

E[f(w∗, X)− z‖w∗‖+ 1]+ = 1− α∗,
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we know the following about the normalized loss distribution at the optimal point w∗:

p̄z (F ) = 1−α∗, q̄α∗ (F ) = z, z− 1

‖w∗‖
∈ [qα∗ (F ) , q+

α∗ (F )], where F := f

(
w∗

‖w∗‖
, X

)
.

5. Extended C-SVM

In this section, we use formula (15) to introduce the EC-SVM. We approach the classifica-
tion problem via a natural bPOE minimization problem. Utilizing the interpretability of
optimization problem (15), we show that the EC-SVM is also simple to interpret. Specifi-
cally, we show that application of Property 4 allows us to interpret the choice of parameter
and the value of the optimal objective in interesting, purely statistical ways.

We also point out that the traditional hinge loss function naturally occurs when mini-
mizing bPOE, meaning that we do not need to explicitly specify it as a loss function. This
can be seen clearly by considering minimization of bPOE at threshold C = 0. Additionally,
it is interesting to notice that we do not explicitly attempt to regularize via use of norms,
as the use of norms naturally arises from (14).

5.1 bPOE Minimization with SVM Loss

Consider the formula for bPOE minimization (15) with discretely distributed random loss
L(w, b,X, y) = −y(wTX+b) with equally probable realizations {−y1(wTX1+b), ...,−yN (wTXN+
b)} and threshold z ∈ R. If we let C = −z and multiply the objective function by N , this
gives us the following optimization problem, which we call the EC-SVM:

min
w,b,ξ

N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + C‖w‖+ 1, ∀i ∈ {1, . . . , N},
ξ ≥ 0.

(19)

Notice that the norm ‖ · ‖, just as in (15), is an arbitrary norm in Rn. Notice also that
the EC-SVM is a very natural formulation. It is simply a buffered way of minimizing the
probability that misclassification errors exceed our threshold −C. Put specifically, instead of
finding the classifier (w, b) that minimizes p−C

(
−y(wTX + b)

)
= P

(
−y(wTX + b) > −C

)
,

we are minimizing its buffered variant, p̄−C
(
−y(wTX + b)

)
.

5.2 Occurrence of Hinge Loss

When discussing SVM’s, it is traditional for people to say that the C-SVM minimizes a
hinge loss function plus a regularization term on the vector w. For the EC-SVM, though,
we see that this is not an accurate description, as we do not need to explicitly specify a
hinge loss function. We see that it naturally arises when minimizing bPOE. Specifically,
minimizing bPOE of the loss function L(w, b,X, y) = −y(wTX + b) at threshold C = 0
yields the following problem, which is exactly minimization of hinge losses:

min
w,b

N∑
i=1

[
−yi(wTXi + b) + 1

]+
. (20)

11
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One can see this more generally by looking at (13), where we are minimizing bPOE of
a PH loss function f(w,X) at threshold zero.

5.3 Interpretability of EC-SVM

Since the EC-SVM is simply bPOE minimization, we can utilize Property 4 to interpret the
C-parameter and the value of the optimal objective in an exact way. Specifically, let us put
Property 4 in terms of the EC-SVM.

Property 5 Suppose (19), with any general norm, yields optimal hyperplane (w∗, b∗) and
the optimal objective value equal to obj∗. Considering L(w∗, b∗, X, y) = −y(w∗TX + b∗)
as a discretely distributed random loss, we know the following about the normalized loss
distribution.

• p̄−C
(
L(w∗,b∗,X,y)
‖w∗‖

)
= 1− α∗ = obj∗

N ,

• q̄α∗
(
L(w∗,b∗,X,y)
‖w∗‖

)
= −C,

• qα∗
(
L(w∗,b∗,X,y)
‖w∗‖

)
≤ −C − 1

‖w∗‖ ≤ q
+
α∗

(
L(w∗,b∗,X,y)
‖w∗‖

)
.

5.3.1 The C-parameter as Superquantile Threshold Choice

For the C-SVM, the non-negative C-parameter is typically discussed as being a tradeoff
between errors and margin size. In the broad scheme of Empirical Risk Minimization
(ERM), this parameter is discussed as the tradeoff between risk and regularization. For
the EC-SVM, we provide a much more concrete interpretation. With the EC-SVM being
exactly bPOE minimization, the C-parameter is a choice of threshold z = −C. Specifically,
looking at Property 5, we have that

q̄α∗

(
L(w∗, b∗, X, y)

‖w∗‖

)
= −C,

where α∗ = 1− obj∗

N = 1− p̄−C
(
L(w∗,b∗,X,y)
‖w∗‖

)
.

5.3.2 The Optimal Objective Value as bPOE

The EC-SVM also has the surprising property that the optimal objective value, divided by
the number of samples, is a probability level. More specifically, as shown in Property 5, we

have that obj∗

N = p̄−C

(
L(w∗,b∗,X,y)
‖w∗‖

)
. In words, the optimal objective value divided by the

number of samples equals bPOE of the optimal normalized loss distribution at threshold
−C.

5.4 Norm Choice and Margin Interpretation

In this section, we show that the EC-SVM has a clear interpretation of ‘margin,’ which is
dependent on the choice of norm. This interpretation shows, in an exact way, how the C
parameter determines the margin of the separating hyperplane.

12



Soft Margin SVM as Buffered Probability Minimization

Looking back to formula (14), using loss function f(w,X) = −y(wTX + b), and making
the change of variable w → w

C , b →
b
C we are able to formulate the following equivalent

problem (for the full derivation, see Appendix E ):

min
γ<−C,w,b

n∑
i=1

[(
1

−C − γ

)(
−yi(wTXi + b) + 1

‖w‖

)
+ 1

]+

s.t.
1

‖w‖
= C.

(21)

From this formulation, we can form an interpretation of the EC-SVM within the context
of selecting an optimal hyperplane under a ‘hard margin’ criterion. To make this interpre-
tation clear, we can start by analyzing (21) formulated with the L2 norm, traditional to the
C-SVM and discussions of ‘maximal margin hyperplanes.’ In this context, we see that the
constraint 1

‖w‖2 = C is fixing the euclidean distance between hyperplanes wTX + b = 1 and

wTX+b = −1, i.e. fixing the margin to be equal to C. Also, we see that the directional dis-

tance from Xi to the corresponding “separating” hyperplane is equal to −yi(w
TXi+b)+1
‖w‖2 . The

optimization problem above, therefore, fixes the margin between “separating” hyperplanes
and minimizes the buffered probability of margin violations. If the classes are linearly sepa-
rable with a margin of at least C, then the optimal objective is 0, meaning that “separating”
hyperplanes are indeed separating. However, when classes are not separable with a margin
of at least C, optimization problem (21) finds the number of worst classified objects such
that the average of their directional distances to corresponding hyperplanes equals to 0.
This number of worst classified objects is then minimized subject to the fixed margin size.

This interpretation, though, extends to any general norm within formulation (21). Using
euclidean distance as our metric for measuring distances in Rn, geometry tells us that the
distance between hyperplanes is given by 2

‖w‖2 and that the directional distance from Xi to

the corresponding “separating” hyperplane equals to −yi(w
TXi+b)+1
‖w‖2 . But what if we were to

use a different metric to measure distances within Rn? For example, what if we were to say
that the ‘distance’ between two points X1, X2 was ‖X1 −X2‖1 instead of ‖X1 −X2‖2? In
this case, the distance between hyperplanes is given by 2

‖w‖∞ . This follows from the concept
of the dual norm.

Denote by ‖ ·‖∗ the norm dual to the norm ‖ ·‖. In the general case, we know that if the
‘distance’ between two points X1, X2 is ‖X1−X2‖∗, then the distance between hyperplanes
wTX + b = 1 and wTX + b = −1 is equal to 2

‖w‖ and that the directional distance from

Xi to the corresponding “separating” hyperplane equals to −yi(w
TXi+b)+1
‖w‖ . Thus, for the

EC-SVM formulated with general norm ‖ · ‖, the constraint 1
‖w‖ = C is fixing the ‘margin’

equal to C in Rn under the implied distance metric defined by the dual norm, ‖ · ‖∗.
Note that the problem above is equivalent to the EC-SVM, (19), having the same optimal

objective and (up to some scaling factor) equivalent optimal hyperplane when parameter
C is the same for both problems. Therefore, the interpretation above is also valid for the
EC-SVM. In particular, if a certain norm ‖ · ‖ is used in the optimization problem setting,
then it is implied that distances between objects represent object similarities in a better
fashion when measured according to the dual norm. The correspondence between C-SVM
and EC-SVM, described further by Theorems 1 and 2, is not as direct as the correspondence
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between (21) and the EC-SVM. However, the presence of this correspondence should also
imply that the use of ‖ · ‖ in optimization problem is closely related to the choice of norm
‖ · ‖∗ for the considered space.

Thus, as opposed to the C-SVM formulation, the EC-SVM formulation has a clear
interpretation as hard margin separation problem for the case of non-separable classes.

6. Connecting the EC-SVM and C-SVM

In this section, we prove the equivalence of the EC-SVM and C-SVM when formulated
with any general norm. Theorems 1 and 2 present the main result, providing a direct
correspondence between parameter choices and optimal solutions. We emphasize the critical
implication, which is that solving the C-SVM with any parameter Ĉ ≥ 0 is equivalent to
solving the EC-SVM (i.e. minimizing bPOE) for some parameter C ≥ 0.

Below be prove the equivalence of C-SVM and EC-SVM with two theorems. We leave
the lengthy proofs to Appendix B. Theorem 1 begins with the assumption that one has
solved the C-SVM and then provides the proper parameter value for which the EC-SVM
will yield the same optimal hyperplane, up to a specific scaling factor, which we also provide.
Theorem 2 is analogous to Theorem 1, but begins with the assumption that one has solved
the EC-SVM. It should be noted that the theorems reference dual variables, which are
discussed more explicitly (via KKT conditions) within the proofs of the theorems.

Theorem 1 Assume that the data set is not linearly separable and suppose optimization
problem (1) is formulated with any general norm ‖ · ‖ and some parameter Ĉ ≥ 0 and that
it has optimal primal variables (w∗, b∗, ξ∗) and optimal dual variables (α∗, β∗). Then (19),

formulated with corresponding norm and parameter C = Ĉ∑N
i=1 β

∗
i

, will have optimal primal

variables (w = µw∗, b = µb∗, ξ = µξ∗) and optimal dual variables (α = α∗, β = β∗), where

µ =
∑N

i=1 β
∗
i∑N

i=1 β
∗
i −Ĉ‖w∗‖

> 0.

Theorem 2 Suppose optimization problem (19) is formulated with any general norm ‖ · ‖
and some parameter C ≥ 0 and that it has optimal primal variables (w∗, b∗, ξ∗) and optimal
dual variables (α∗, β∗). Then (1), formulated with corresponding norm and parameter Ĉ =
C
∑N

i=1 β
∗
i , will have optimal primal variables (w = µw∗, b = µb∗, ξ = µξ∗) and optimal

dual variables (α = α∗, β = β∗), where µ = 1
1+C‖w∗‖ > 0.

7. Presentation as Cohesive Structure

Here, we show exactly why it is appropriate to call formulation (19) the EC-SVM. Specif-
ically, we show that the EC-SVM is equivalent to the Eν-SVM, producing the same set
of optimal solutions. This follows directly from the fact that bPOE is the inverse of the
superquantile. This fact helps solidify the idea that the EC-SVM is an extension of the
C-SVM in the same way that the Eν-SVM is an extension of the ν-SVM. First, as was
proved in Section 6, the optimal solution set produced by the C-SVM over C ∈ [0,∞) is
contained in the optimal solution set produced by the EC-SVM over C ∈ (−∞,∞). Second,
the EC-SVM extends the allowable range of the C parameter to negative C-values. Thus,
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just as the Eν-SVM extends the parameter range and optimal solution set of the ν-SVM,
the EC-SVM does the same for the C-SVM.

Proposition 3 The EC-SVM and Eν-SVM, formulated with the same general norm, pro-
duce the same set of optimal hyperplanes.

Proof First, recall that the EC-SVM is equivalent to bPOE minimization. Second, re-
call that the Eν-SVM is equivalent to superquantile minimization. Using these two facts,
the equivalence follows immediately from Mafusalov and Uryasev (2015), which shows that
(w, b) is a minimizer of bPOE at some threshold level if and only if (w, b) is a minimizer of
the superquantile at some probability level.

To help gather all of the results we have discussed, we can present them as a cohesive
structure in the following table:

Ĉ ∈ [0,+∞) C ∈ (−∞,+∞) = −z
↑ ↑ ↑

C-SVM ⊂ EC-SVM ≡ min
w,b

p̄z
(
−y(wTX + b)

)
m m m

ν-SVM ⊂ Eν-SVM ≡ min
w,b

q̄α
(
−y(wTX + b)

)
↓ ↓ ↓

ν̂ ∈ (νmin, νmax] ν ∈ [0, 1] = 1− α

Key:

• m Formulations generate the same set of optimal solutions.
• ⊂ The right hand side formulation is an “extension” of the left hand formulation.

(i.e. in the way that Eν-SVM is an extension of ν-SVM)
• ≡ Formulations are objectively equivalent.
• ↑ or ↓ Arrow points to parameter values for the formulation.

8. Dual Formulations and Kernalization

Typically, the C-SVM is presented first in its primal form, then in its dual form, as the
latter provides insights into selection of support vectors via dual variables while additionally
providing a quadratic optimization problem for solving the C-SVM (in the case of the L2

regularization norm). This quadratic optimization problem also allows one to use the ‘kernel
trick,’ utilizing the presence of dot products to introduce a non-linear mapping to a high
dimensional feature space.

In this section, we present the dual formulations of the C-SVM, (1), and EC-SVM, (19),
formulated with any general norm. We leave the derivation of these dual formulations to
Appendix C. We use these formulations to enlighten our perspective in two ways. First,
in conjunction with Theorems 1 and 2, we use the dual formulations to show that the
optimal objective value of the C-SVM and EC-SVM coincide when yielding the same optimal
hyperplane. This effectively yields the surprising result that the optimal value of the C-
SVM objective function, divided by sample size, equals a probability level. Second, we use
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these dual formulations to present kernalization of the EC-SVM when formulated with the
L2 norm.

Assume the EC-SVM, (19), is formulated with some norm ‖ · ‖ and C ≥ 0. Let ‖ · ‖∗ be
the corresponding dual norm, then the dual formulation is as follows:

max
β

N∑
i=1

βi

s.t.

∥∥∥∥∥
N∑
i=1

βiyiXi

∥∥∥∥∥
∗

≤ C
N∑
i=1

βi,

N∑
i=1

βiyi = 0,

0 ≤ βi ≤ 1, ∀i ∈ {1, . . . , N}.

(22)

Assume the C-SVM, (1), is formulated with some norm ‖ · ‖ and C ≥ 0. Let ‖ · ‖∗ be
the corresponding dual norm, then the dual formulation is as follows:

max
β

N∑
i=1

βi

s.t.

∥∥∥∥∥
N∑
i=1

βiyiXi

∥∥∥∥∥
∗

≤ C,

N∑
i=1

βiyi = 0,

0 ≤ βi ≤ 1, ∀i ∈ {1, . . . , N}.

(23)

Given the dual formulations, it follows immediately from Theorems 1 and 2 that the
optimal dual objective solutions coincide when parameters are chosen so that the EC-SVM
and C-SVM produce the same optimal hyperplane. Additionally, this result applies to
the primal formulations via strong duality. Thus, since the EC-SVM objective, divided
by sample size, equals a probability level (as seen in Property 6), we can conclude that
the optimal objective value of the C-SVM primal formulation, divided by sample size, also
equals a probability level.

8.1 Kernalization of EC-SVM

Here we briefly present various methods for utilizing the kernel trick with the EC-SVM.
First, the most obvious way is for the L2 norm case and the dual EC-SVM formulation.
To effectively apply the kernel trick2, we need only to square the constraint in the dual
formulation ∥∥∥∥∥

N∑
i=1

βiyiXi

∥∥∥∥∥
∗

≤ C
N∑
i=1

βi ,

2. Recall that the L2 norm is self-dual.
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forming the following convex quadratically constrained quadratic program (QCQP) (24),
where φ(Xi) represents a non-linear kernel mapping of the ith data vector. Note that this
can be efficiently solved with most convex optimization software.

max
β

N∑
i=1

βi

s.t.
N∑
i=1

N∑
i=1

βiβj
(
yiyjφ(Xi)

Tφ(Xj)− C2
)
≤ 0,

N∑
i=1

βiyi = 0,

0 ≤ βi ≤ 1, ∀i ∈ {1, . . . , N}.

(24)

The application of the kernel trick, though, is not limited to the dual formulation.
Mimicking the work of Chapelle (2007), we can apply the kernel in the primal formulated
with the L2 norm by using the representers theorem of Schölkopf et al. (2001). Since the
representers theorem applies to the C-SVM, it indeed can be applied to the equivalent convex
EC-SVM.3 Thus, we know that in the high dimensional feature space we can represent
the optimal solution of the convex EC-SVM as w =

∑
i θiyiφ(Xi). Therefore, using this

representation, we can write the primal EC-SVM with C ≥ 0 and the L2 norm as the
following unconstrained non-smooth convex program, where Kij = φ(Xi)

Tφ(Xj).

min
θ,b

N∑
i=1

[−yi(
∑
j

θjyjKij + b) + C

∑
i

∑
j

θiθjyiyjKij

 1
2

+ 1]+ . (25)

Furthermore, this can be reformulated as the following convex QCQP.

min
θ,b,ξ,t

N∑
i=1

ξi

s.t. ξi ≥ −yi(
∑
j

θjyjKij + b) + Ct+ 1, ∀i ∈ {1, . . . , N}.

ξ ≥ 0

t2 ≥
∑
i

∑
j

θiθjyiyjKij .

(26)

So far, we have discussed the case of the L2 norm and C ≥ 0. Here, for the interest of the
reader, we briefly mention how to apply a standard technique which allows approximate
kernelization of the EC-SVM with any norm and C ∈ R. Here, we explicitly map the
data vectors into the high dimensional feature space by approximating the kernel map.
Let K ∈ RN×N be the positive semi-definite (PSD) matrix such that Kij = φ(Xi)

Tφ(Xj)
and, with abuse of notation, let X = [X1, ..., XN ] be the matrix of data vectors. Let

3. In other words, because the EC-SVM and C-SVM produce the same set of optimal solutions for C ≥ 0,
we can say that their optimal solutions can be represented in the same way.
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V = [V1, ..., VN ] and Λ = diag{λ1, ..., λn} be the matrix of eigenvectors and associated
eigenvalues of K with λ1 ≥ λ2 ≥ ... ≥ λn. With K being symmetric PSD, we then have the
eigendecomposition,

K = φ(X)Tφ(X) = V ΛV T = (Λ
1
2V T )T (Λ

1
2V T ) .

Thus, we can approximate φ(X) by taking the top d eigenvectors and eigenvalues to get

X̂ = diag{λ1, ..., λd}
1
2 [V1, ..., Vd]

T ≈ Λ
1
2V T = φ(X) .

Then, we can simply use X̂ as our data in the linear EC-SVM, (19), with any norm or
parameter value and solve using the standard methods that will be discussed in Section
10.2.

9. Interpretation as Robust Optimization, Pessimistic vs. Optimistic
Uncertainty

In this section, we present an equivalent representation of the convex and non-convex case
of the EC-SVM as robust optimization (RO) problems. This equivalence is enlightening for
both the convex and non-convex case. In general, we find that the RO representation reveals
a unique interpretation, showing that the convex case corresponds to bPOE minimization
with worst-case pessimistic data uncertainty, while the non-convex case corresponds to
bPOE minimization with best-case optimistic data uncertainty. For the convex case, the RO
representation is similar to existing equivalences for the C-SVM in Xu et al. (2009), but with
a much simpler proof, definition of uncertainty set, and correspondence between equivalent
parameter values. For the non-convex case, this new representation reveals a connection
with the Total Support Vector Classifier (T-SVC) proposed in Bi and Zhang (2005) and
suggests an efficient heuristic for the optimization. Furthermore, the RO representation
reveals that this seemingly heuristic optimization method, which was shown to work well
in the T-SVC case, is related to DCA, a popular algorithm for locally minimizing DC
(difference of convex) functions.

9.1 Convex Case and Pessimism

For the convex case of the EC-SVM, (19), when we have C ≥ 0, it is simple to show that
it is equivalent to (27) and (28). Notice that we are minimizing bPOE, as we did before,
but with threshold equal to zero and data subject to pessimistic disturbances δi. We call
this pessimism, because we are maximizing w.r.t. the disturbance and looking at the worst
case. This is the traditional viewpoint of robust optimization, leading to a special case of
the Wald’s minimax model.

min
w,b

max
δi

p̄0

(
−y(wT (X + δ) + b)

)
s.t. ‖δi‖∗ ≤ C , i = 1, ..., N

(27)

min
w,b

max
δi

∑
i

[−yi(wT (Xi + δi) + b) + 1]+

s.t. ‖δi‖∗ ≤ C, i = 1, ..., N

(28)
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To see the equivalence between (19) and (28), one only needs to observe that for any w ∈ Rn,
if C ≥ 0, we have that

C‖w‖ = C max
‖δ‖∗≤1

wT δ = max
‖δ‖∗≤C

wT δ = max
‖δ‖∗≤C

−ywT δ .

Furthermore, to see the equivalence between (28) and (27), a simple application of the
bPOE formula (9) and multiplication by N transforms (27) into (28).

This provides us with three things. First, we see that the bPOE threshold can be
interpreted as controlling the size of the uncertainty set. Following from the transformation
of (19) to (28) via the simple algebra, we see that this correspondence is exact, meaning
that a threshold of C in the EC-SVM implies an uncertainty set with “size” C in (28)
(i.e. optimal solutions are the same when parameters are the same). Second, we see that
regularization with norm ‖ · ‖ implies uncertainty w.r.t. the corresponding dual norm ‖ · ‖∗.
Third, we see that the convex case can be interpreted as pessimistic, or risk averse, following
the traditional RO framework.

9.2 Nonconvex Case and Optimism

For the non-convex case, we find a similar robust reformulation, but instead of pessimistic
disturbances we have optimistic disturbances. Specifically, for the EC-SVM (19), when we
have C < 0, it is simple to show that it is equivalent to (29) and (30). Notice again that we
are minimizing bPOE, as we did before, but with threshold equal to zero and data subject
to optimistic disturbances δi. We call this optimistic, because we are minimizing w.r.t. the
disturbance and looking at the best case.

min
w,b,δi

p̄0

(
−y(wT (X + δ) + b)

)
s.t. ‖δi‖∗ ≤ −C , i = 1, ..., N

(29)

min
w,b,δi

∑
i

[−yi(wT (Xi + δi) + b) + 1]+

s.t. ‖δi‖∗ ≤ −C , i = 1, ..., N

(30)

To see the equivalence between (19) and (30), one only needs to observe that for any
w ∈ Rn, if C < 0, we have that

C‖w‖ = C max
‖δ‖∗≤1

wT δ

= − max
‖δ‖∗≤1

−CwT δ

= − max
‖δ‖∗≤−C

wT δ

= min
‖δ‖∗≤−C

wT (−δ)

= min
‖δ‖∗≤−C

wT δ = min
‖δ‖∗≤−C

−ywT δ .

Furthermore, to see the equivalence between (30) and (29), a simple application of the
bPOE formula (9) and multiplication by N transforms (29) into (30).
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This formulation is enlightening for two reasons. First, as already mentioned, we see
that the non-convex EC-SVM can be viewed from the RO lens as minimizing bPOE with
an optimistic view of the data set. The optimistic perspective makes sense if one assumes,
for example, that your data observations have been contaminated by noise. This view is
supported by Bi and Zhang (2005), which proposes the Total Support Vector Classifier (T-
SVC). Specifically, as revealed by the RO formulation, we see that the T-SVC is equivalent
to the non-convex EC-SVM with L2 norm. In their paper, they show that by using an
alternating minimization strategy to solve this problem, a special case of the non-convex EC-
SVM performs better than the C-SVM if data have been contaminated by noise. Second, as
we will discuss in the next section, the RO formulation suggests that the simple alternating
minimization algorithm for finding the local minimum is equivalent to DCA in a certain
sense.

10. Practical Considerations

In this section, we consider some practical implications of the theoretical insights connecting
soft margin SVM’s and bPOE minimization. We first discuss the most obvious use, which
is for the selection of the threshold parameter. We show that the new interpretation of the
C tradeoff parameter suggests a range that should be used to select the C parameter. This
helps to improve grid selection for cross validation so that one can partially avoid solving the
EC-SVM for values of C that yield trivial or redundant optimal solutions. Furthermore,
using the robust interpretation of the EC-SVM, we show that there may be situations
where prior knowledge about data uncertainty suggests, at-best, a fixed C or, at-worst,
much tighter bounds for the range of interesting C values for cross-validation.

Another practical consideration is the optimization of the EC-SVM for the convex and
non-convex case. For the convex case, we discuss alternative formulations that can be
efficiently solved by standard convex optimization tools. With some of these approaches not
well suited for large scale problems, we briefly mention recent work on subgradient methods
that can be efficiently applied to the EC-SVM. For the non-convex case, we suggest a simple
alternating minimization algorithm and show that this procedure has appealing connections
with DCA, the Difference of Convex Functions Algorithm; see Tao and An (1997) or Dinh
and Le Thi (2014).

Finally, with most learning applications, the true distribution of (X, y) is unknown and
thus we must deal with only a finite sample. For example, throughout this paper, we
assumed that we had N observations. Thus, in this case, we work with empirical estimates
of bPOE, the quantile, the superquantile, and misclassification rate of the true distribution.
A practical question, therefore, is regarding generalization. Given an optimal classifier by
solving the EC-SVM (or equivalently the C-SVM), what can we say about the true rate
of misclassification, P (−y(wTX + b) > 0), or the true value of bPOE, p̄z(−y(wTX + b))?
With regard to misclassification rate, we utilize results from Takeda and Sugiyama (2008);
Schölkopf et al. (2000) to show that generalization bounds can be posed in terms of empirical
estimates of bPOE, the quantile, and the superquantile, i.e. the information provided by
Property 5. With regard to bPOE, we apply the stability arguments of Bousquet and
Elisseeff (2002) to provide tight generalization bounds on the true bPOE at any non-positive
threshold and show that the SVM parameter, C, plays an important role in these bounds.
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10.1 Parameter Selection

10.1.1 Bounds for the Threshold

With the EC-SVM having a parameter interpretable as the bPOE threshold, we use this
to select bounds on the admissible range of the parameter C. From (9), we see that for a
random variable Z, the only interesting values of the parameter are −C = z ∈ [E[Z], supZ].
Finding this range, or a range containing it, can assist in performing grid search for model
selection where we are trying to find the best choice of C without unnecessary iterations
over meaningless or redundant parameter values (e.g. different parameter values all yielding
bPOE equal to 1). First, we consider the EC-SVM with unbiased linear classifier, where
b = 0. Then, using this result and some geometric intuition, we are able to formulate a
similar bound for biased classifiers, where b is a free variable.

Since the EC-SVM is minimizing bPOE of −y(wTX+b)
‖w‖ , we know from (9) that the thresh-

old parameter C achieves varying solutions only for

−C ∈

[
inf
w,b

E

[
−y(wTX + b)

‖w‖

]
, inf
w,b

{
sup
X,y

(
−y(wTX + b)

‖w‖

)}]
.

For the case where b = 0, we can use simple algebraic arguments to find data dependent
upper and lower bounds for this range. First, we have the lower bound,

−C ≥ min
w

1

N

∑
i

−yi(wTXi)

‖w‖
≥ −max

i,w

wTXi

‖w‖
= −max

i
‖Xi‖∗ .

Next, we find an upper bound for this range.

−C ≤ min
w

max
i

−yi(wTXi)

‖w‖
≤ max

i,w

wTXi

‖w‖
= max

i
‖Xi‖∗ .

Therefore, when the EC-SVM is formulated with unbiased hyperplane wTX, we only need
to do a grid search for −C ∈ [−maxi ‖Xi‖∗,maxi ‖Xi‖∗]. Now, consider the case of the
biased hyperplane. To find a lower bound of this range, first note, importantly, that by
having a biased hyperplane (i.e. by including the b term), we have that the lower bound

can be trivially unbounded with infw,bE
[
−y(wTX+b)
‖w‖

]
= −∞. But this is unreasonable since

this hyperplane trivially classifies all points as belonging to the same class. We know that
any reasonable hyperplane should at least intersect the norm ball supporting the data set,
i.e. the norm ball with radius maxi ‖Xi‖∗. Therefore, any non-trivial hyperplane should
have an expected margin error larger than the margin error of the best classified point.
Because the hyperplane at least intersects the norm ball at one point, the best classified
point will have margin error no smaller than −2 maxi ‖Xi‖∗. Therefore, a reasonable lower
bound for −C is,

−C ≥ −2 max
i
‖Xi‖∗ .

For the upper bound, the exact same logic applies but w.r.t. the worst classified point
for any hyperplane intersecting the norm ball containing all data points. Therefore, a
reasonable upper bound for −C is,

−C ≤ 2 max
i
‖Xi‖∗ .
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Thus, when the EC-SVM is formulated with biased hyperplane wTX + b, we only need to
do a grid search for −C ∈ [−2 maxi ‖Xi‖∗, 2 maxi ‖Xi‖∗].

10.1.2 Using the Robust Interpretation

For specific situations, one can actually use the RO representation of the EC-SVM to select
the proper parameter value. Since the parameter does not change value, along with the
optimal (w, b), when moving from formulation (19) to (28) or (19) to (30), we can use the
RO interpretation, exactly, to select parameter values for (19).

A situation where this would be ideal is if each data point Xi is given by some measure-
ment and we know the maximum amount by which this measurement can deviate from the
true value. Consider the following two dimensional example, where we use some equipment
to measure blood pressure X(1) and weight X(2) where X = [X(1), X(2)] ∈ R2. Assume that
we know that the equipment to measure blood pressure is off by at most ±2 and that the
equipment to measure weight is off by at most ±2. In this case, for any specific measurement
Xi, we know that a representative uncertainty set would be ‖δi‖∞ ≤ 2. This immediately
implies that C = 2 is desirable if one chooses to be pessimistic about the uncertainty or that
C = −2 is desirable if one chooses to be optimistic about the uncertainty. Furthermore,
this implies that one should use the EC-SVM formulated with the L1 norm ‖w‖1 since its
dual norm is the L∞ norm.

Furthermore, in less idealistic situations when knowledge of the deviation of measure-
ment is not so exact, the same intuition can be used to, at least, select a range of C values
for cross validation that is smaller than the interval [−2 maxi ‖Xi‖∗, 2 maxi ‖Xi‖∗] provided
in the previous section.

10.2 Optimization of the EC-SVM

10.2.1 Convex Case

The primal and dual EC-SVM formulated with any general norm and C ≥ 0 are convex
optimization problems and, thus, there are many options for efficient optimization. Essen-
tially, since from the optimization viewpoint the difference between C-SVM and EC-SVM
is minor, the complexity of convex EC-SVM is exactly the same as that of C-SVM. For a
general norm, due to convexity, gradient methods may be successfully implemented. For
particular norms, we may reformulate the problem as a specific type of convex optimization
problem to target available solvers. Below, we detail some problem reformulations into
Quadratically Constrained Quadratic Programs (QCQP), Second-Order Cone Programs
(SOCP), and Linear Programs (LP). If we assume that the norm is the euclidean norm, the
EC-SVM with C ≥ 0 can be written as the convex QCQP,

min
w,b,ξ,t

N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + Ct+ 1, ∀i ∈ {1, . . . , N}.
ξ ≥ 0

t2 ≥ wTw.

(31)

22



Soft Margin SVM as Buffered Probability Minimization

Note that if we simply write t ≥ ‖w‖2, it is a convex SOCP. If the norm is LP representable
(e.g. the L1 or L∞ norm), the problem can be reformulated as an LP. For example, with
the L1 norm, the EC-SVM with C ≥ 0 can be written as,

min
w,ŵ,b,ξ,t

N∑
i=1

ξi

s.t. ξi ≥ −yi(wTXi + b) + Ct+ 1, ∀i ∈ {1, . . . , N}.
ξ ≥ 0

t ≥
n∑
j=1

ŵj

ŵj ≥ wj
ŵj ≥ −wj .

(32)

Note that the convex dual EC-SVM can also be written as a QCQP, SOCP, or LP in a
similar manner depending on the choice of norm.

For large-scale problems, though, these reformulations may suffer. For the C-SVM, this
issue has garnered much attention. Although we leave in-depth exploration to future work,
we note that many techniques used to solve large scale SVM’s are directly applicable to
the convex EC-SVM. Note that the primal EC-SVM with C ≥ 0 can be formulated as the
following convex, non-smooth optimization problem.

min
w,b

N∑
i=1

[−yi(wTXi + b) + C‖w‖+ 1]+ (33)

This formulation lends itself to subgradient methods, particularly stochastic variants which
have been shown to work well for large-scale SVMs. In fact, methods mirroring Pegasos
Shalev-Shwartz et al. (2011), a solver using a subgradient method which finds an ε-accurate
solution, with high probability, for the primal C-SVM in runtime O( 1

Cε), have been suc-
cessfully applied to large-scale robust SVM’s taking a similar form to (33) in Wang et al.
(2016).4 Note, also, that the EC-SVM can be formulated as a decomposable consensus
problem which can be solved in a distributed way via the Alternating Direction Method of
Multipliers; see Chapter 7 and 8 of Boyd et al. (2011).

10.2.2 Non-Convex Case

For the EC-SVM with C < 0, solving for a global optimum is much more difficult. We
can, though, solve for a local minimum by using the optimistic RO formulation (30) and
implementing the simple, seemingly heuristic, approach of alternating minimization. While
this approach was shown to be effective for the T-SVC special case of the EC-SVM presented
in Bi and Zhang (2005), we show here that its effectiveness may be explained, on the
surface at least, by its connection with DCA. Specifically, we have the following alternating
algorithm, where at each step one solves an LP followed by a convex optimization problem:

4. Ignoring some details for simplicity, the robust SVM of similar form is formulated as

minw,b

∑
i[−yi(w

TXi + b) + C‖Σ
1
2w‖+ 1]+, where Σ is a particular covariance matrix.
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• Initialize: Minimize (30) w.r.t. (w, b), fixing δi = 0 for all i = 1, ..., N . Denote
optimal point as (w∗, b∗).

• Step 1: Let δ̂i = argmax
‖δi‖∗≤−C

w∗T δi for all i = 1, ..., N .

• Step 2: Minimize (30) w.r.t. (w, b), fixing δi = δ̂i for all i = 1, ..., N . Denote the
optimal point as (w∗, b∗).

• Step 3: If iteration limit reached or convergence criteria is satisfied, STOP. Else,
return to Step 1.

This algorithm, at worst, seems like a simple heuristic approach to a non-convex problem
with intuitive appeal. In Step 1, we start with the data X+δ, which is an optimistic version
of the original data X if δ 6= 0. We then find a classifier (w, b) that minimizes bPOE at
threshold zero on the optimistic version of the data set. Then, in Step 2, we look for a new,
optimistic view of the data that is optimistic w.r.t. the new classifier found in Step 1.

In addition to its intuitive appeal, however, this alternating minimization has theoret-
ical justification. We can show that this alternating minimization algorithm is essentially
implementing DCA, a commonly used algorithm for solving DC optimization problems. In
short, a DC function h, is such that h(v) = h1(v)− h2(v) where h1, h2 are both convex. To
find a local minimum for the problem minv h(v), DCA performs the following steps5 :

• Initialize: v̂ = argmin
v

h1(v).

• Step 1: Set δ equal to a subgradient of h2 at v̂: δ ∈ ∂h2(v̂).

• Step 2: Set v̂ = argmin
v

h1(v)− vT δ.

• Step 3: If iteration limit reached or convergence criteria is satisfied, STOP. Else,
return to Step 1.

Thus, DCA can be seen as first linearizing the concave term at the current solution via a
subgradient and then solving a convex subproblem which replaces the concave term with
the linear approximation.

To see how the alternating minimization procedure is related to DCA, first notice that
when C < 0, the function −yi(wTXi + b) +C‖w‖+ 1 is DC; the sum of the convex function
−yi(wTXi+b)+1 and the concave function C‖w‖. Therefore,

∑
i[−yi(wTXi+b)+C‖w‖+1]+

is also DC.6 Second, notice that −C‖w‖ can be viewed as the support function of the convex
set S = {δ|‖δ‖∗ ≤ −C}, meaning that −C‖w‖ = maxδ∈S w

T δ. By the properties of support
functions7 we then know that if δ ∈ argmax

‖δ‖∗≤−C
wT δ, then δ ∈ ∂(−C‖w‖).

Therefore, we see that we initialize the alternating minimization algorithm by setting
the concave part to zero and minimizing the convex part. Then, in Step 1, because of the

5. Note that for brevity, we present a very simplified view of DCA and ignore the underlying duality results
which produce this algorithm.

6. This follows from the property that the maximum of DC functions is DC and that the sum of DC
functions is DC.

7. See e.g. Chapter 13 of Rockafellar (2015).
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properties of the support function, we are equivalently solving for δ̂i ∈ ∂(−C‖w‖). Finally,
in Step 2, we linearize the concave part using this subgradient and solve the resulting convex
problem. Thus, not only is the alternating minimization algorithm simple, but it is also
theoretically appealing with its relation to DCA.

10.3 Generalization of POE and bPOE for SVM Classifiers

In machine learning, particularly in the context of empirical risk minimization, statistical
learning theory is a popular tool for analyzing the predictive ability of a learning algorithm
A : S → F which maps a sample S onto a function AS ∈ F , with F being some class of
functions such that the score AS(X) ∈ R is used to predict y given X. For example, in
classification, we can consider the prediction of y given X to be sign{AS(X)}. Statistical
learning theory addresses the fact that the true distribution of (X, y) is usually unknown
and we are only given access to a finite sample S = {(X1, y1), ..., (XN , yN )}. Thus, if we
have, for example, a real valued random loss V (AS , (X, y)) for the output AS of the learning
algorithm trained on S, we need to estimate the true risk

Rtrue(A,S) = EX,y[V (AS , (X, y))] ,

given only the empirical estimate,

Remp(A,S) =
1

N

∑
i

V (AS , (Xi, yi)) .

The risk can be viewed as a type of performance metric we would like to minimize, like bPOE
or misclassification rate. Given a training algorithm and a training set S, statistical learning
theory helps to determine the expected value of the difference |Rtrue(A,S)−Remp(A,S)|.

In the context of binary classification, we consider two different types of risk (or per-
formance metrics) for the EC-SVM (or equivalently C-SVM) learning algorithm. We first
consider the true misclassification rate, which is the typical object of study for classification
algorithms in statistical learning theory. Drawing on results from Takeda and Sugiyama
(2008), we show that, given a solution to the EC-SVM, the true misclassification rate can
be upper bounded by a function of the empirical estimates of bPOE, the superquantile, and

the quantile of the random loss
(
−y(wTX+b)
‖w‖

)
. Furthermore, given Property 5, we find that

we can state these bounds in terms of the value of the EC-SVM objective function, C, and
1
‖w‖ .

Next, instead of misclassification rate, we consider generalization bounds for the true

bPOE of the random loss
(
−ywTX
‖w‖

)
. Using the stability arguments of Bousquet and Elisseeff

(2002), given a solution to the EC-SVM or C-SVM, we provide tight upper bounds for the
true bPOE at any non-positive threshold. In general, for binary classification, we find that
using these stability arguments to bound bPOE is more intuitive than the use of the clipped
loss function from Bousquet and Elisseeff (2002). Note that we only consider the unbiased
case with b = 0, as it is unclear whether this bound holds for the biased case. Furthermore,
in Section 10.3.2 we consider only the L2 norm and in Section 10.3.3 we only consider norms
possessing a variant of strong convexity.
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In the following sections, given a sample S = {(X1, y1), ..., (XN , yN )}, we consider
L(w, b, S) to be a discretely distributed random loss with equally probable realizations
{−y1(wTX1 + b), ...,−yN (wTXN + b)}. Therefore, we have that

p̄−C

(
L(w, b, S)

‖w‖

)
, q̄α

(
L(w, b, S)

‖w‖

)
, and qα

(
L(w, b, S)

‖w‖

)
are empirical estimates of the true bPOE, superquantile, and quantile

p̄−C

(
−y(wTX + b)

‖w‖

)
, q̄α

(
−y(wTX + b)

‖w‖

)
, qα

(
−y(wTX + b)

‖w‖

)
.

10.3.1 Generalization of POE

Takeda and Sugiyama (2008) provide bounds on the true misclassification rate of the Eν-
SVM classifier. Given the equivalence between the Eν-SVM and EC-SVM provided in
Section 7, we can apply these results directly to the EC-SVM. Although these results are
pulled directly from Takeda and Sugiyama (2008), hence we do not provide the proofs, we
find that we can pose their bounds on the true misclassification rate strictly in terms of
the empirical estimates of bPOE, the superquantile, and the quantile of the random loss(
−y(wTX+b)
‖w‖2

)
. Furthermore, given Property 5, we find that we can state these bounds in

terms of the value of the EC-SVM objective function, C, and 1
‖w‖2 . Note also that we are

able to provide bounds for the non-convex case where C < 0.
For the following theorems, let Ptrue = P

(
−y(wTX + b) > 0

)
, i.e. the true misclassifi-

cation rate for the classifier (w, b), and let

G(τ) =

√
2

N

(
4k2(R2 + 1)2

τ2
log2(2N)− 1 + ln

2

ρ

)
.

Theorem 3 Suppose that (w, b) is an optimal solution to the EC-SVM trained on sample
S, that the optimal objective value divided by sample size N equals 1 − α, and that either
C > 0 or C < 0 and −C − 1

‖w‖2 < 0. If the support X of X is contained in a ball of
radius R, then there exists a positive constant k such that the following bound holds with
probability at least 1− ρ:

Ptrue ≤ p̄−C
(
L(w, b, S)

‖w‖2

)
+G

(
qα

(
L(w, b, S)

‖w‖2

))
.

Furthermore, given Property 5, this can be written simply as:

Ptrue ≤ 1− α+G

(
−C − 1

‖w‖2

)
.

Theorem 4 Make the same assumptions as in Theorem 3, but suppose that C < 0 and
−C − 1

‖w‖2 > 0. Then there exists a positive constant k such that the following bound holds
with probability at least 1− ρ:

Ptrue ≥ p̄−C
(
L(w, b, S)

‖w‖2

)
−G

(
qα

(
L(w, b, S)

‖w‖2

))
.
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Furthermore, given Property 5, this can be written simply as:

Ptrue ≥ 1− α−G
(
−C − 1

‖w‖2

)
.

Given these theorems, we see that the EC-SVM is directly minimizing the the lower (or
upper) bound on Ptrue, while simultaneously trading off w.r.t. the choice in parameter C.

10.3.2 Generalization of Buffered Probability

Here, we use the stability arguments of Bousquet and Elisseeff (2002) to provide gener-
alization bounds on bPOE for optimal solutions of the C-SVM and convex EC-SVM. We
provide tight bounds for bPOE of the normalized loss distribution of the classifier given
by an SVM trained on a finite sample. This shows that while the C-SVM and EC-SVM
directly minimize bPOE, this statistic does, in fact, generalize to unseen samples.

For brevity, we avoid a full introduction of uniform stability and the associated gen-
eralization theorems and refer readers to Bousquet and Elisseeff (2002). Thus, we confine
most details to the proof. Theorem 5 considers the C-SVM, but with squared norm, and

shows that we can provide tight bounds on the true bPOE of the loss
(
−ywTX
‖w‖

)
at any

non-positive threshold. We present the C-SVM with squared norm in the main theorem,
as opposed to the EC-SVM, because the bound expression is much more straightforward.
Corollary 1 shows how this result applies to the case of the EC-SVM with L2 norm.

In general, both bound expressions provide the same intuitive result. The uncertainty
regarding the estimate of bPOE will grow as the bPOE threshold considered in the SVM
minimization shrinks. As the SVM parameter grows larger, the threshold for the equivalent
bPOE minimization problem decreases. Thus, we are considering a growing portion of
the tail of the loss distribution in our minimization. This means that the SVM objective
function will get larger, but the uncertainty will grow smaller since a larger portion of
the tail will be easier to estimate than a smaller portion (it contains more samples). The
opposite holds true as the SVM parameter shrinks, getting closer to zero. This implies that
we are considering a shrinking portion of the tail of the loss distribution in our minimization.
Thus, the SVM objective function will grow smaller, but the uncertainty will grow larger
since a smaller portion of the tail will be more difficult to empirically estimate (it contains
less samples).

We note that we assume that the classifier is unbiased with b = 0 and that the squared
norm is differentiable and m-strongly convex w.r.t. itself.8 For example, the squared L2

norm is strongly convex w.r.t. itself with m = 2. A bias term can be included by con-
catenating a feature equal to one onto the data, but this would then be included in the
regularization norm. It is unclear whether these bounds hold for the truly unbiased case.
Although we do not present it, we also point out that this can easily be generalized to con-
sider functions in a Reproducing Kernel Hilbert Space such that the kernel function K(·, ·)
is bounded with supX∈X K(X,X) ≤ R, as is done in Bousquet and Elisseeff (2002). For the

following proposition, recall that p̄−C

(
−ywTX
‖w‖

)
denotes the true bPOE while p̄−C

(
L(w,S)
‖w‖

)
denotes empirical bPOE.

8. A differentiable function f is m-strongly convex w.r.t. the norm ‖ · ‖ if for any w1, w2 we have that
m
2
‖w1 − w2‖2 ≤ f(w1)− f(w2)− 〈∇f(w2), w1 − w2〉.
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Theorem 5 Assume that the squared norm ‖ · ‖2 is differentiable and m-strongly convex
w.r.t. itself and that supx∈X ‖x‖∗ ≤ R, meaning that the support X of X is contained in a
‖ · ‖∗-norm ball of radius R. Assume we solve the C-SVM with squared norm on training
set S = {(X1, y1), ..., (XN , yN )}, yielding

wS ∈ argmin
w

1

N

∑
i

[−yiwTXi + 1]+ + λ‖w‖2 ,

where λ > 0. Then for any a,C ≥ 0, with probability 1− ρ,

p̄−C

(
−ywTSX
‖wS‖

)
≤ 1

N

∑
i

[−yiawTSXi + C‖awS‖+ 1]+ +
U 1

2
(a, λ, C)

√
ln 1

ρ√
N

+
U1(a, λ, C)

N
,

where U 1
2
(a, λ, C) = 1√

2
+ a(R+C)√

2λ

(
1 + 4R

m
√
λ

)
, U1(a, λ, C) = 2aR(R+C)

mλ . In particular,

p̄−C

(
−ywTSX
‖wS‖

)
≤ p̄−C

(
L(wS , S)

‖wS‖

)
+
U 1

2
(āS , λ, C)

√
ln 1

ρ√
N

+
U1(āS , λ, C)

N
,

with probability 1− ρ, when āS ∈ argmin
a≥0

1
N

∑
i[−yiawTSXi + C‖awS‖+ 1]+.

Proof Let V (w, (X, y), a, C) = [−yawTX +C‖aw‖+ 1]+. First, note that, for any C ≥ 0,

p̄−C(
−ywTSX
‖wS‖

) = min
a≥0

E[a

(
−ywTSX
‖wS‖

+ C

)
+ 1]+

= min
a≥0

E[
a

‖wS‖
(
−ywTSX + C‖wS‖

)
+ 1]+

= min
a≥0

E[−yawTSX + C‖awS‖+ 1]+

≤ E[V (wS , (X, y), a, C)] ,∀ a ≥ 0 .

Given any a ≥ 0, we can upper bound E[V (wS , (X, y), a, C)] by using stability arguments
of Bousquet and Elisseeff (2002).

We first prove that the C-SVM with squared norm is uniformly stable, as defined in
Bousquet and Elisseeff (2002), w.r.t. loss function V (w, (X, y), a, C), showing that there
exists θ such that for any sample S,

sup
X,y
|V (wS , (X, y), a, C)− V (wSj , (X, y), a, C)| ≤ θ

where

wS ∈ argmin
w

1

N

∑
i

[−yiwTXi + 1]+ + λ‖w‖2

wSj ∈ argmin
w

1

N

∑
i 6=j

[−yiwTXi + 1]+ + λ‖w‖2 .
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First, note that for any w1, w2 ∈ Rn, X, y ∈ X × {−1, 1} we have that

|V (w1, (X, y), a, C)− V (w2, (X, y), a, C)| = |[−y(awT1 X) + C‖aw1‖+ 1]+

− [−y(awT2 X) + C‖aw2‖+ 1]+|
≤ | − y(awT1 X) + C‖aw1‖+ 1

−
(
−y(awT2 X) + C‖aw2‖+ 1

)
|

=
∣∣−ya(w1 − w2)TX + Ca(‖w1‖ − ‖w2‖)

∣∣
≤
∣∣−ya(w1 − w2)TX

∣∣+ Ca |‖w1‖ − ‖w2‖|
≤
∣∣−ya(w1 − w2)TX

∣∣+ Ca‖w1 − w2‖
≤ a

∣∣(w1 − w2)TX
∣∣+ Ca‖w1 − w2‖

≤ sup
X∈X

a
∣∣(w1 − w2)TX

∣∣+ Ca‖w1 − w2‖

≤ sup
‖X‖∗≤R,X∈Rn

a
∣∣(w1 − w2)TX

∣∣+ Ca‖w1 − w2‖

= Ra‖w1 − w2‖+ Ca‖w1 − w2‖
= a(R+ C)‖w1 − w2‖

We show now that ‖wS − wSj‖ ≤ R
mNλ . Let df , d̄f denote the Bregman divergence and

the generalized Bregman divergence of a convex function f with subderivatives at any w
denoted as ∇f(w) ∈ ∂f(w). (See Appendix F for definition and properties of divergence).
Let g(w) = ‖w‖2, hS(w) = 1

N

∑
i[−yiwTXi + 1]+, and hSj (w) = 1

N

∑
i 6=j [−yiwTXi + 1]+.

First, since g(w) is assumed to be m-strongly convex w.r.t. itself, by definition we have
m
2 ‖wS − wSj‖2 ≤ dg(wS , wSj ). Next, we have that

λm‖wS − wSj‖2 ≤ λ (dg(wSj , wS) + dg(wS , wSj ))

= dλg(wSj , wS) + dλg(wS , wSj )

(following from (44)) = d̄λg(wSj ,∇λg(wS)) + d̄λg(wS ,∇λg(wSj ))

Since generalized divergence is linear and non-negative (see Appendix F and (45)), we have
for any ∇(hS(wS) + λg(wS)) ∈ ∂(hS(wS) + λg(wS)) and any ∇(hSj (wSj ) + λg(wSj )) ∈
∂(hSj (wSj ) + λg(wSj )), that

d̄λg(wSj ,∇λg(wS)) + d̄λg(wS ,∇λg(wSj )) ≤ d̄(hS+λg)(wSj ,∇(hS(wS) + λg(wS)))

+ d̄(h
Sj +λg)(wS ,∇(hSj (wSj ) + λg(wSj ))) .

Now, since 0 ∈ ∂(hS(wS) + λg(wS)) and 0 ∈ ∂(hSj (wSj ) + λg(wSj )), we have

d̄λg(wSj ,∇λg(wS)) + d̄λg(wS ,∇λg(wSj )) ≤ d̄(hS+λg)(wSj , 0) + d̄(h
Sj +λg)(wS , 0)

(following from (46)) = hS(wSj ) + λg(wSj )− hS(wS)− λg(wS)

+ hSj (wS) + λg(wS)− hSj (wSj )− λg(wSj )

= hS(wSj )− hS(wS) + hSj (wS)− hSj (wSj )

=
1

N
(V (wSj , (Xj , yj), 1, 0)− V (wS , (Xj , yj), 1, 0))

≤ R‖wSj − wS‖
N
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This then implies that ‖wS − wSj‖2 ≤ ‖wS − wSj‖ R
mNλ which further implies that ‖wS −

wSj‖ ≤ R
Nλm . Together with the previous result, we have that

|V (wS , (X, y), a, C)− V (wSj , (X, y), a, C)| ≤ a(R+ C)‖wS − wSj‖ ≤
aR(R+ C)

Nλm
.

Thus, the learning algorithm is uniformly θ-stable w.r.t. loss function V with θ = aR(R+C)
Nλm .

To apply Theorem 12 of Bousquet and Elisseeff (2002), which gives us the final general-
ization bound, we need to show that V (wS , (X, y), a, C) is bounded. To see this, first notice
that

λ‖wS‖2 ≤ hS(wS) + λ‖wS‖2 ≤ hS(0) + λ‖0‖2 =
1

N

∑
i

V (0, (Xi, yi), 1, 0) = 1 .

Second, combining this with the first result of the proof yields,

V (wS , (X, y), a, C) ≤ |V (wS , (X, y), a, C)− V (0, (X, y), a, C)|+ V (0, (X, y), a, C)

≤ a(R+ C)‖wS − 0‖+ 1

≤ a(R+ C)√
λ

+ 1 .

Thus, applying Theorem 12 of Bousquet and Elisseeff (2002), for any a ≥ 0 yields the first
generalization bound. The second generalization bound follows from the fact that if

ā ∈ argmin
a≥0

1

N

∑
i

[−yiawTSXi + C‖awS‖+ 1]+ ,

then,
1

N

∑
i

[−yiāwTSXi + C‖āwS‖+ 1]+ = p̄−C

(
L(wS , S)

‖wS‖

)
.

Corollary 1 Make the same assumptions as in Theorem 5, but solve the EC-SVM with
‖ · ‖ = ‖ · ‖2 and Ĉ > 0, which yields,

wS ∈ argmin
w

1

N

∑
i

[−yi(wTXi) + 1 + Ĉ‖w‖2]+ .

Then, for any a,C ≥ 0, with probability 1− ρ,

p̄−C

(
−ywTSX
‖wS‖

)
≤ 1

N

∑
i

[−yiaµwTSXi+C‖aµwS‖+1]++
U 1

2
(a, λS , C)

√
ln 1

ρ√
N

+
U1(a, λS , C)

N
,
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where λS =
Ĉ

∑
i βi

2‖wS‖2 , µ = 1
1+Ĉ‖wS‖2

, and βi are the optimal dual variables of the EC-SVM.

In particular, when āS ∈ argmin
a≥0

1
N

∑
i[−yiaµwTSXi+C‖aµwS‖+1]+, with probability 1−ρ,

p̄−C

(
−ywTSX
‖wS‖

)
≤ p̄−C

(
L(wS , S)

‖wS‖

)
+
U 1

2
(āS , λS , C)

√
ln 1

ρ√
N

+
U1(āS , λS , C)

N
.

Proof From Theorem 2, we know that if w is optimal for the EC-SVM with Ĉ ≥ 0, then
solving the EC-SVM is equivalent to solving the C-SVM with parameter Ĉ

∑
i β and will

yield optimal solution µwS . Furthermore, it is easy to see by looking at the KKT system
(34) that if w is optimal for the C-SVM with parameter Ĉ ≥ 0, then solving the C-SVM is

equivalent to solving the C-SVM with squared norm with parameter Ĉ
2‖w‖2 and will yield op-

timal solution w. Therefore, if wS is optimal for the EC-SVM with Ĉ ≥ 0, then solving the

EC-SVM is equivalent to solving the C-SVM with squared norm with parameter
Ĉ

∑
i βi

2‖wS‖2 and

will yield optimal solution µw. Thus, we can apply Theorem 5 with λ =
Ĉ

∑
i βi

2‖wS‖2 and µwS .

11. Conclusion

In this paper we have introduced a new SVM formulation called the EC-SVM to help provide
theoretical insights into the nature of the C-SVM, soft margin support vector classifier.
Much like the Eν-SVM, this new formulation acts as an extension of the C-SVM. The main
contribution of this paper, though, is not a new SVM formulation with computational or
generalization benefits.

The main contribution of this paper is proof that soft margin support vector classifica-
tion is equivalent to simple bPOE minimization. Additionally, we show that the C-SVM,
EC-SVM, ν-SVM, and Eν-SVM fit nicely into the general framework of superquantile and
bPOE minimization problems. This allows us to gain interesting and surprising insights,
interpreting soft margin support vector optimization with newly developed statistical tools.
For example, we were able to show that the C-parameter of the C-SVM has a statisti-
cal interpretation and that the optimal objective value, divided by sample size, equals a
probability level.

Additionally, we were able to provide two useful interpretations of the EC-SVM. First,
we showed that it can be considered to be a hard-margin optimization problem, showing
that the choice of regularization norm implies a metric used to define the margin. Second,
we showed that the convex and non-convex case can be interpreted as Robust Optimization
problems, with convexity implying pessimistic views of data uncertainty and non-convexity
implying optimistic views of data uncertainty.

We also address some practical implications of these theoretical insights. We show that
the new interpretations imply that the interesting values of C lie in a limited range. We
also suggest methods for solving the convex and non-convex case of the EC-SVM, using
the robust interpretation in particular for solving the non-convex case in an efficient and
theoretically justifiable way. Finally, we also show that we can provide generalization bounds
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for both misclassification rate and bPOE. We provide tight bounds for bPOE of the loss
distribution of the classifier given by the C-SVM and EC-SVM trained on a finite sample.
This shows that while the C-SVM and EC-SVM minimize bPOE, this statistic does, in fact,
generalize to unseen samples.

In the broad scheme, we were able to show that the C-SVM formulation, derived tra-
ditionally from geometric intuition, can also be derived from purely statistical tools, with
little geometric intuition involved. Specifically, we show that these statistical tools are
superquantiles and the related bPOE.
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Appendix A. Ineffective Variation of Threshold Levels

In application, it may be desirable that bPOE is minimized for different thresholds z ∈ R
yielding a selection of optimal distributions f(w∗z , X), where w∗z = arg min p̄z(f(w,X)) for
some chosen value of threshold z. This way, one could do some type of model selection
or analysis based upon the behavior of the optimal distribution over different thresholds.
In doing so, one would expect to achieve different solutions for different threshold choices.
As shown in the following propositions, the naive construction of formulation (12) com-
bined with the positive homogeneity of f(w,X) causes formulation (12) to achieve only two
possible optimal solutions.

Proposition 4 and Corollary 2 show that for any threshold z ≤ 0, formulation (12)
becomes equivalent to

min
w∈Rn

p̄0(f(w,X)),

effectively yielding the solution for threshold z = 0. Proposition 5 shows that for any
threshold z > 0, formulation (12) yields a trivial solution.

Proposition 4 If f(w,X) is PH w.r.t. w and minimizing bPOE at z ≤ 0 yields

1− α∗ = min
w,γ<z

E[f(w,X)− γ]+

z − γ
,

with optimal solution vector (w∗, γ∗), then for any a ≥ 1, z̄ = az we have

1− α∗ = min
w,γ<z̄

E[f(w,X)− γ]+

z̄ − γ
,

with optimal solution vector (aw∗, aγ∗).
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Proof Assume that for z ≤ 0,

1− α∗ = min
w∈Rn

p̄z(f(w,X)) = min
w∈Rn,γ<z

E[f(w,X)− γ]+

z − γ
=
E[f(w∗, X)− γ∗]+

z − γ∗
.

This means that p̄z(f(w∗, X)) ≤ p̄z(f(w,X)) for every w ∈ Rn. Now, notice that for z̄ = az,
where a ≥ 1,

p̄z̄(f(aw∗, X)) =
E[f(aw∗, X)− aγ∗]+

z̄ − aγ∗

=
a

a

E[f(w∗, X)− γ∗]+

z − γ∗

= 1− α∗

= p̄z(f(w∗, X)).

Since p̄z(f(w,X)) is a monotonically decreasing function w.r.t. z, we also know that
p̄z(f(w∗, X)) ≤ p̄z̄(f(w∗, X)) for every z̄ = az, a ≥ 1. Therefore, if min

w∈Rn
p̄z(f(w,X)) =

1− α∗ at (w∗, γ∗), then for any z̄ = az, a ≥ 1 we have that min
w∈Rn

p̄z̄(f(w,X)) = 1− α∗ at

(aw∗, aγ∗).

Corollary 2 Given Proposition 4, we can say that if z ≤ 0, then

min
w∈Rn,γ<z

E[f(w,X)− γ]+

z − γ
= min

w∈Rn
p̄0(f(w,X)).

Proof Let (zn) be a strictly decreasing sequence such that z0 < 0 and limn→∞ zn = 0.
Proposition 2 implies that

min
w∈Rn

p̄z0(f(w,X)) = min
w∈Rn

p̄z1(f(w,X)) = ... = min
w∈Rn

p̄0(f(w,X)).

Intuitively, this corollary simply follows from application of Proposition 2 to any z < 0
arbitrarily close to zero.

Proposition 5 If z > 0, then

min
w∈Rn,γ<z

E[f(w,X)− γ]+

z − γ
= 0.

Proof Objective is a non-negative function. If z > 0, then for γ ∈ (0, z) the objective is 0,
hence, optimal.
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Appendix B. Proofs for Theorems 1 and 2

B.1 Theorem 1

Proof To prove Theorem 1, we compare the KKT systems of (1) and (19) formulated with
the same general norm, ‖ · ‖. We assume that the C-SVM with parameter Ĉ ≥ 0 yields
optimal primal variables (w∗, b∗, ξ∗) and optimal dual variables (α∗, β∗). Thus, this is the
same as assuming that (w∗, b∗, ξ∗, α∗, β∗) satisfies the following KKT system of (1):

ξ∗ ≥ 0, (34a)

β∗ ≥ 0, (34b)

α∗ ≥ 0, (34c)

− α∗ − β∗ + 1 = 0, (34d)

ξ∗i ≥ −yi(w∗Txi + b∗) + 1, (34e)

0 ∈ −Ĉ∂‖w∗‖+

N∑
i=1

yiβ
∗
i xi, (34f)

N∑
i=1

−yiβ∗i = 0, (34g)

α∗i ξ
∗
i = 0 = (1− β∗i )ξ∗i , (34h)

β∗i
[
−yi(w∗Txi + b∗) + 1− ξ∗i

]
= 0. (34i)

Now, we show that with µ =
∑N

i=1 β
∗
i∑N

i=1 β
∗
i −Ĉ‖w∗‖

, the variables (µw∗, µb∗, µξ∗, α∗, β∗) satisfy the

KKT system of (19). We then show that indeed µ > 0 when the data set is not linearly
separable. The KKT system of (19) formulated with parameter C ≥ 0 is as follows:

ξ ≥ 0, (35a)

β ≥ 0, (35b)

α ≥ 0, (35c)

− α− β + 1 = 0, (35d)

ξi ≥ −yi(wTxi + b) + 1 + C‖w‖, (35e)

0 ∈ −C∂‖w‖
N∑
i=1

βi +

N∑
i=1

yiβixi, (35f)

N∑
i=1

−yiβi = 0, (35g)

αiξi = 0 = (1− βi)ξi, (35h)

βi
[
−yi(wTxi + b) + 1 + C‖w‖ − ξi

]
= 0. (35i)

When now show that

(
w = µw∗, b = µb∗, ξ = µξ∗, α = α∗, β = β∗, C = Ĉ∑N

i=1 β
∗
i

)
satisfy

all of these conditions and is thus a solution to the KKT system (35).
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1. ξ ≥ 0 : True, since ξ = µξ∗, ξ∗ ≥ 0, µ ≥ 0.

2. β ≥ 0 : True, since β = β∗ ≥ 0.

3. α ≥ 0 : True, since α = α∗.

4. −α− β + 1 = 0 : True, since −α− β + 1 = −α∗ − β∗ + 1 = 0.

5. ξi ≥ −yi(wTxi + b) + 1 + C‖w‖ −→ µξ∗i ≥ −yi(w∗Txi + b∗)µ+ 1 + µC‖w∗‖
−→ ξ∗ ≥ −yi(w∗Txi + b∗) +

(
1
µ + C‖w∗‖

)
= −yi(w∗Txi + b∗)

+
(

1− Ĉ∑N
i=1 β

∗ ‖w∗‖+ Ĉ∑N
i=1 β

∗ ‖w∗‖
)

= −yi(w∗Txi+b∗)+1 : True, following from (34e).

6. 0 ∈ −C∂‖w‖
∑N

i=1 βi +
∑N

i=1 yiβixi : True, following from

C∂‖w‖
∑N

i=1 βi = Ĉ∂‖µw∗‖ = Ĉ∂‖w∗‖,
∑N

i=1 yiβixi =
∑N

i=1 yiβ
∗
i xi, and (34f).

7.
∑N

i=1−yiβi = 0 : True, since β = β∗ and (34g).

8. αiξi = 0 : True, since α = α∗, ξ = µξ∗, µ > 0, and (34h).

9. βi
[
−yi(wTxi + b) + 1 + C‖w‖ − ξi

]
= 0 ⇐⇒ βiξi = −βiyi(wTxi + b) + βi + βiC‖w‖.

Notice then that (35h) =⇒ βiξi = ξi. This gives us ξi = µξ∗ = −µβ∗i yi(w∗Txi +

b∗)+β∗i +β∗i C‖µw∗‖ = β∗i +β∗i
Ĉµ∑N
i=1 β

∗
i

‖w∗‖+µ [ξ∗i − β∗i ] where −µβ∗i yi(w∗Txi+ b∗) =

µ [ξ∗i − β∗i ] is implied by (35i). Furthermore, notice that this last equality is true ⇐⇒

β∗i

[
1 + Ĉµ∑N

i=1 β
∗
i

‖w∗‖ − µ
]

= 0 ⇐⇒ 1 + Ĉ‖w∗‖∑N
i=1 β

∗
i −Ĉ‖w∗‖

−
∑N

i=1 β
∗
i∑N

i=1 β
∗
i −Ĉ‖w∗‖

= 0. Clearly,

the last equality is true.

Now we show that for non-linearly separable data sets, µ > 0. We use the KKT
system (34) to form the dual via the Lagrangian. We then show that

∑N
i=1 β

∗
i > Ĉ‖w∗‖,

which proves that µ > 0.

We first have that the Lagrangian of (1) is the following:

L(w, b, ξ, α, β) = Ĉ‖w‖+
N∑
i=1

ξi +
N∑
i=1

βi
[
−yi(wTxi + b) + 1− ξi

]
−

N∑
i=1

αiξi

Using (34d,g), we can then simplify, also maximizing w.r.t. the dual variables and minimiz-
ing w.r.t. the primal variables, to form the following dual. Here, the constraints are implied
by (34d,g).

max
β

N∑
i=1

βi +

(
inf
w,b
Ĉ‖w‖+

N∑
i=1

βi
[
−yi(wTxi + b)

])
s.t. 0 ≤ β ≤ 1.

N∑
i=1

yiβi = 0.

(36)
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Notice that since w = 0, b = 0 is a feasible solution, we know that

inf
w,b

Ĉ‖w‖+
N∑
i=1

βi
[
−yi(wTxi + b)

]
≤ 0.

Finally, noting that with the optimal variables assumed to be (w∗, b∗, ξ∗, α∗, β∗), we see that

N∑
i=1

β∗i +

(
inf
w,b

Ĉ‖w‖+

N∑
i=1

β∗i
[
−yi(wTxi + b)

])
= Ĉ‖w∗‖+

N∑
i=1

ξ∗.

But since the data set is not linearly separable
∑N

i=1 ξ
∗ > 0. This implies that

∑N
i=1 β

∗
i >

Ĉ‖w∗‖, which shows that µ =
∑N

i=1 β
∗
i∑N

i=1 β
∗
i −Ĉ‖w∗‖

> 0.

B.2 Theorem 2

Proof To prove Theorem 2, we compare the KKT systems of (1) and (19) formulated with
the same general norm, ‖ · ‖. We assume that the EC-SVM with parameter C ≥ 0 yields
optimal primal variables (w∗, b∗, ξ∗) and optimal dual variables (α∗, β∗). Thus, this is the
same as assuming that (w∗, b∗, ξ∗, α∗, β∗) satisfies the following KKT system of (19):

ξ∗ ≥ 0, (37a)

β∗ ≥ 0, (37b)

α∗ ≥ 0, (37c)

− α∗ − β∗ + 1 = 0, (37d)

ξ∗i ≥ −yi(w∗Txi + b∗) + 1 + C‖w∗‖, (37e)

0 ∈ −C∂‖w∗‖
N∑
i=1

β∗i +

N∑
i=1

yiβ
∗
i xi, (37f)

N∑
i=1

−yiβ∗i = 0, (37g)

α∗i ξ
∗
i = 0 = (1− β∗i )ξ∗i , (37h)

β∗i
[
−yi(w∗Txi + b∗) + 1 + C‖w∗‖ − ξ∗i

]
= 0. (37i)

Now, we show that with µ = 1
1+C‖w∗‖ > 0, the variables (µw∗, µb∗, µξ∗, α∗, β∗) satisfy the

KKT system of (1). We then show that indeed µ > 0 when the data set is not linearly
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separable. The KKT system of (1) formulated with parameter Ĉ ≥ 0 is as follows:

ξ ≥ 0, (38a)

β ≥ 0, (38b)

α ≥ 0, (38c)

− α− β + 1 = 0, (38d)

ξi ≥ −yi(wTxi + b) + 1, (38e)

0 ∈ −Ĉ∂‖w‖+

N∑
i=1

yiβixi, (38f)

N∑
i=1

−yiβi = 0, (38g)

αiξi = 0 = (1− βi)ξi, (38h)

βi
[
−yi(wTxi + b) + 1− ξi

]
= 0. (38i)

When now show, one by one, that (w = µw∗, b = µb∗, ξ = µξ∗, α = α∗, β = β∗, Ĉ =
C
∑N

i=1 β
∗
i ) satisfy all of these conditions and is thus a solution to the KKT system (38):

1. ξ ≥ 0 : True, since ξ = µξ∗, ξ∗ ≥ 0, µ ≥ 0.

2. β ≥ 0 : True, since β = β∗ ≥ 0.

3. α ≥ 0 : True, since α = α∗.

4. −α− β + 1 = 0 : True, since −α− β + 1 = −α∗ − β∗ + 1 = 0.

5. ξi ≥ −yi(wTxi + b) + 1 −→ µξ∗i ≥ −yi(w∗Txi + b∗)µ+ 1 ⇐⇒ ξ∗ ≥ −yi(w∗Txi + b∗) +
(1 + C‖w∗‖) : True, following from (37e).

6. 0 ∈ −Ĉ∂‖w∗‖+
∑N

i=1 yiβixi: True, following from

Ĉ∂‖w∗‖ = C∂‖w‖
∑N

i=1 βi,
∑N

i=1 yiβixi =
∑N

i=1 yiβ
∗
i xi, and (37f).

7.
∑N

i=1−yiβi = 0 : True, since β = β∗ and (37g).

8. αiξi = 0 : True, since α = α∗, ξ = µξ∗, µ > 0, and (37h).

9. βi
[
−yi(wTxi + b) + 1− ξi

]
= β∗i

[
−µyi(w∗Txi + b∗) + 1− µξ∗i

]
=

β∗i +
β∗i (−yi(w∗T xi+b∗)−ξ∗i )

1+C‖w∗‖ = 0 ⇐⇒ β∗i
[
−yi(w∗Txi + b∗) + 1 + C‖w∗‖ − ξ∗i

]
= 0,

which is True, following from (37i).

Now we point out that µ > 0. This follows immediately from the assumption that C ≥ 0
and the fact that ‖w∗‖ ≥ 0.
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Appendix C. Derivation of EC-SVM Dual Formulation

The dual of the EC-SVM is formulated as follows, via the Lagrangian:

max
α≥0
β≥0

min
w,b

N∑
i=1

ξi +

N∑
i=1

βi
[
−yi(wTxi + b) + 1− ξi + C‖w‖

]
−

N∑
i=1

αiξi

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
w

C‖w‖
N∑
i=1

βi +

N∑
i=1

−βiyiwTxi

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min

w 6=0,a≥0
aC

N∑
i=1

βi +
a
∑N

i=1−βiyiwTxi
‖w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC
N∑
i=1

βi + amin
w 6=0

∑N
i=1−βiyiwTxi
‖w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC
N∑
i=1

βi − amin
w 6=0

∑N
i=1 βiyiw

Txi
‖ − w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC
N∑
i=1

βi − a

∥∥∥∥∥
N∑
i=1

−βiyixi

∥∥∥∥∥
∗]

= max
β

N∑
i=1

βi

s.t.

∥∥∥∥∥
N∑
i=1

βiyixi

∥∥∥∥∥
∗

≤ C
N∑
i=1

βi,

N∑
i=1

βiyi = 0,

0 ≤ βi ≤ 1, ∀i ∈ {1, . . . , N}.
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Appendix D. Derivation of C-SVM Dual Formulation

The dual of the C-SVM is formulated as follows, via the Lagrangian:

max
α≥0
β≥0

min
w,b

N∑
i=1

ξi + C‖w‖+

N∑
i=1

βi
[
−yi(wTxi + b) + 1− ξi

]
−

N∑
i=1

αiξi

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
w

C‖w‖+

N∑
i=1

−βiyiwTxi

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min

w 6=0,a≥0
aC +

a
∑N

i=1−βiyiwTxi
‖w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC + amin
w 6=0

∑N
i=1−βiyiwTxi
‖w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC − amin
w 6=0

∑N
i=1 βiyiw

Txi
‖ − w‖

]

= max
0≤β≤1∑N
i=1 βiyi=0

N∑
i=1

βi +

[
min
a≥0

aC − a

∥∥∥∥∥
N∑
i=1

−βiyixi

∥∥∥∥∥
∗]

= max
β

N∑
i=1

βi

s.t.

∥∥∥∥∥
N∑
i=1

βiyixi

∥∥∥∥∥
∗

≤ C,

N∑
i=1

βiyi = 0,

0 ≤ βi ≤ 1, ∀i ∈ {1, . . . , N}.

Appendix E. Derivation of Formula (21)

To see how we derive (21), we begin with formula (14) with f(w,X) = −y(wTX + b) and
z = −C:

min
γ<−C,w,b

n∑
i=1

[
−yi(wTXi + b)

−C − γ
− γ

−C − γ

]+

s.t. ‖w‖ = 1.

(39)
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We then make the change of variable wnew = w
C , bnew = b

C . Note then that

−yi(wTXi + b)

−C − γ
= C
−yi(wTnewXi + bnew)

−C − γ

=
−yi(wTnewXi + bnew)

‖wnew‖(−C − γ)
.

Plugging this and the new variables into (41), we get:

min
γ<−C,wnew,bnew

n∑
i=1

[
−yi(wTnewXi + bnew)

‖wnew‖(−C − γ)
− γ

−C − γ

]+

s.t. ‖wnew‖ =
1

C
.

(40)

Finally, note that

1

‖wnew‖(−C − γ)
+ 1 =

1 + ‖wnew‖(−C − γ)

‖wnew‖(−C − γ)

=
1 + (−1− γ

C )

(−1− γ
C )

=
−γ
C

(
C

−C − γ

)
=

−γ
−C − γ

.

Plugging this into (40), we finally arrive at

min
γ<−C,wnew,bnew

n∑
i=1

[(
1

−C − γ

)(
−yi(wTnewXi + bnew) + 1

‖wnew‖

)
+ 1

]+

s.t.
1

‖wnew‖
= C.

(41)

Appendix F. Bregman Divergence

For a convex function f : Rn → R, let ∂f(w) denote the set of subderivatives∇f(w) ∈ ∂f(w)
at a point w ∈ Rn. For a differentiable, convex f the Bregman Divergence at w1, w2 ∈ Rn
is defined as

df (w1, w2) = f(w1)− f(w2)− 〈∇f(w2), w1 − w2〉 . (42)

Since f is differentiable, ∇f(w) is the unique subderivative, and thus the divergence is
well defined. If f is convex, but not differentiable, ∇f(w) may not be unique. In this case,
however, following Appendix C of Bousquet and Elisseeff (2002), we can define a generalized
Bregman Divergence. Letting the function f∗(a) = supw〈w, a〉− f(w) denote the conjugate
of f , we define the generalized Bregman Divergence at w1, a ∈ Rn as,

d̄f (w1, a) = f(w1) + f∗(a)− 〈w1, a〉 . (43)
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As it relates to the normal Bregman Divergence, it is easy to check that for convex differ-
entiable f ,

df (w1, w2) = d̄f (w1,∇f(w2)) . (44)

which follows from the property that

a ∈ ∂f(w) ⇐⇒ f∗(a) = 〈a,w〉 − f(w) .

As for its other properties, first note that the generalized divergence is non-negative. Second,
notice that we have linearity, such that if f = g+h, for convex functions g, h, and we choose
subderivatives of f, g, h satisfying ∇f(w2) = ∇g(w2) +∇h(w2), then

d̄f (w1,∇f(w2)) = d̄g(w1,∇g(w2)) + d̄h(w1,∇h(w2) . (45)

To see this, we simply need to expand the right hand side in the following manner, where
we use the fact that a ∈ ∂f(w) ⇐⇒ f∗(a) = 〈a,w〉 − f(w) in the third and fifth equality.

d̄f (w1,∇f(w2)) = d̄(g+h)(w1,∇(g + h)(w2))

= (g + h)(w1) + (g + h)∗(∇(g + h)(w2))− 〈w1,∇(g + h)(w2)〉
= [(g + h)(w1)− 〈w1,∇(g + h)(w2)〉] + 〈w2,∇(g + h)(w2)〉 − (g + h)(w2)

= [(g + h)(w1)− 〈w1,∇(g + h)(w2)〉] + (〈w2,∇g(w2)〉 − g(w2))

+ (〈w2,∇h(w2)〉 − h(w2))

= [(g + h)(w1)− 〈w1,∇(g + h)(w2)〉] + g∗(∇g(w2)) + h∗(∇h(w2))

= (g(w1) + g∗(∇g(w2))− 〈w1,∇g(w2)〉)
+ (h(w1) + h∗(∇h(w2))− 〈w1,∇h(w2)〉)

= d̄g(w1,∇g(w2)) + d̄h(w1,∇h(w2) .

Finally, assume that wf is a minimizer of f , meaning that 0 ∈ ∂f(wf ). Then, we have
for any w1,

d̄f (w1, 0) = f(w1)− f(wf ) . (46)
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